Finabel

FINABEL - THE EUROPEAN LAND FORCE COMMANDERS
ORGANISATION

AUGUST 2025

INFOFLASH!

SSIMULATION-BASED ASSESSMEN
i OF PASSIVE AIRBASE DEFENCES
‘ IN PEER WARFARE

] ]
WRITTEN BY EDITED BY
PIETER DE NIJS JONAS HEINS
]

SUPERVISED BY
STEPHEN CROWLEY



Introduction

The proliferation of advanced precision-guided munitions (PGMs) has constituted a
significant operational risk for fixed military installations and soft targets, particularly
airbases and grounded aircraft. In contemporary peer-level high-intensity conflict, the
ability of an adversary to conduct large-scale, pre-emptive missile strikes against these
static assets presents a critical challenge to allied force projection and airpower generation
(Priebe et al.,, 2019, pp. viii-ix, 1-3). While active defence systems are critical to the defensive
matrix, their potential to be overwhelmed or exhausted in a saturation attack (Wilkening,
2000, pp. 191, 203) necessitates a robust addition of passive defence measures, including
hardening, dispersal, and deception to enhance airbase survivability and operational
resilience (Karako, 2019, p. 3). This is particularly salient for European and NATO forces,
whose forward posture on the Eastern flank concentrates high-value air assets at a limited
number of main operating bases. This report aims to develop and employ a simulation-
based framework to quantitatively assess the protective value of hardening techniques,
specifically the use of Hardened Aircraft Shelters (HAS). By modelling various attack
scenarios against different defensive postures of a representative NATO airbase, this study
evaluates how different shelter configurations contribute to asset survivability. The analysis
utilises probabilistic methods to account for the stochastic nature of missile combat,
offering data-driven insights into the marginal utility of infrastructure hardening in
mitigating the effects of a first strike.

1. The Doctrinal Foundations of Airpower and Its Inherent Vulnerabilities

Air superiority, or “the degree of dominance of one force over another which permits the
conduct of operations by the former and its related land, sea, and air forces at a given time
and place without prohibitive interference by the opposing force” (US DOD, 2015, p.10),
has been a central objective in military strategy since the conceptualisation and integration
of airpower during World War |. Over the past century, aerial supremacy has evolved from
a novel concept into a critical enabler of both land and maritime operations (NATO, 2018,
para. 22). Airpower’s ability to conduct a broad array of tasks, from tactical ground support,
logistical interdiction, to the strategic degradation of rear-echelon assets (UK MOD, 2021),
has made it a force multiplier on modern battlefields and a prerequisite to military
operations (Piatkowski et al., 2024, para. 1). Consequently, the development and




preservation of air capabilities are a central priority for advanced militaries, a trend
reflected in the sustained global investment in aerospace research and procurement (ASD
Europe, 2024, para. 2; Department of the Air Force, 2025, paras. 4-6).

These investments in air power have produced a paradox. Offensively, modern air forces
employ platforms that are significantly faster, more networked, and more lethal to air- and
ground forces than in previous generations (Ellis, 2016). On the defensive side,
advancements integrated radar networks, electronic warfare (EW) capabilities, and low
observability (LO) have made aircraft significantly more survivable in contested airspace
(Kostis, 2024. p. 133). As a result, the destruction of aircraft in flight has become a difficult
and resource-intensive task. The enhanced in-flight survivability of modern aircraft
inadvertently shifts offensive focus toward a more fundamental vulnerability, the aircraft
on the ground. Regardless of technological sophistication, an aircraft is dependent on fixed
infrastructure for re-arming, refuelling, maintenance, and sortie generation. On the ground,
it is a static, predictable target, exposed to pre-emptive strikes, thus exposing even the
most advanced fleets to asymmetric risks. This vulnerability has been exacerbated by two
concurrent trends, the maturation of persistent intelligence, surveillance, and
reconnaissance (ISR) capabilities and the proliferation of PGMs. Adversaries can now
detect, fix, and engage targets at fixed installations with unprecedented speed and
accuracy (Van Hooft & Boswinkel, 2019). The strategic fragility of concentrated airpower
has become visible by Russian losses during its invasion of Ukraine, where Ukrainian missile
strikes on Russian airbases, such as the attack on Saky Air Base in Crimea (Schwirtz, 2022),
demonstrated that a technologically sophisticated force can suffer significant attrition on
the ground.

This strategic challenge is particularly acute for European and NATO forces, especially along
the Eastern flank. Alliance air policing and forward-presence missions necessitate the
concentration of high-value assets (NATO, 2025), such as fifth-generation F-35s, as well as
tanker and AWACS aircraft (NATO Allied Air Command Public Affairs Office, 20253, paras 3,
6.) at a limited number of Main Operating Bases (MOBs) (NATO Allied Air Command Public
Affairs Office, 2025b, paras. 2, 18). Furthermore, several member states are modernising
their air forces (Jepma, 2025; Lunday & Groeneveld, 2025; Pilgrim, 2025) without a
proportional expansion of basing infrastructure (Zeigler et al., 2025), leading to a potential
overconcentration of assets that creates potentially decisive targets in the opening phases
of a peer-level conflict. In response to the threats posed to military infrastructure, defensive




planners have traditionally relied on a matrix of active and passive measures to deter or
mitigate offensive operations.

Active Defences

Active defences, in the context of missile defence, rely on advanced kinetic interceptor
systems that physically destroy incoming threats before impact (EBESCO, 2022, para. 1).
Examples include the PATRIOT missile system, Terminal High Altitude Area Defence
(THAAD), and the Iron Dome, each tailored to counter specific ranges and types of
projectiles. While these systems are highly effective and play a vital role in layered defence
strategies, they are finite in number. Massed, multi-vector, or sustained attacks can
potentially saturate and overwhelm advanced active defence networks, a problem
compounded by the unfavourable cost-exchange ratio of using expensive interceptors
against relatively cheap drones or cruise missiles (Karako & Williams, 2017).

Passive Defences

Passive defences are designed to reduce damage and maintain operational continuity,
should active defences become penetrated or rendered ineffective. These measures
encompass a range of strategies aimed at complicating enemy targeting and protecting
critical assets. Dispersal involves spreading aircraft across multiple locations, including
austere or improvised airfields, to make adversary strikes less effective, a key principle of
the Agile Combat Employment (ACE) concept (Richardson, 2025). Deception employs
decoys, camouflage, and concealment to disrupt or mislead enemy targeting systems
(Global Security, n.d.; Morgan, 2021; Pettyjohn, 2022). Hardening focuses on physically
reinforcing infrastructure, most notably through the use of Hardened Aircraft Shelters
(HAS), which shield aircraft and essential equipment from the effects of kinetic attacks
(Pettyjohn, 2022). The argument for enhancing passive defences raises critical questions
about resource allocation and operational benefit. While concepts like ACE address
dispersal, the physical protection of assets at MOBs remains essential, particularly for
ensuring continuity of operations under fire.

This study aims to provide a quantitative assessment of the protective value of HAS under
conditions of a saturation missile attack. The central research objective is to determine the




extent to which HAS contribute to the survivability of air assets and the preservation of
sortie-generation capacity during the initial stages of a high-intensity conflict. To achieve
this, the report develops and employs a simulation-based assessment framework to model
a NATO airbase under various attack profiles. The analysis systematically varies key
parameters, including shelter density, the use of decoys, and the scale and precision of
missile strikes to evaluate asset vulnerability. Incorporating probabilistic Monte Carlo
methods and dynamic targeting logic, the model captures the stochastic nature of missile
engagements and defensive responses. This approach moves beyond simple binary
outcomes (hit or miss), by incorporating layered damage modelling, weapon proximity
effects, and intercept probabilities to provide a nuanced understanding of how
infrastructure and aircraft fare under realistic combat conditions. The findings are intended
to offer policymakers and military planners data-driven insights into the marginal protective
value of hardening infrastructure as a key component of airbase resilience.

2. Research Design

This study adopts a quantitative, simulation-based approach to evaluate the operational
effectiveness of HAS in mitigating aircraft losses during saturation missile strikes in a peer-
level conflict scenario. The analysis is motivated by the recognition that air assets remain
critically dependent on fixed, and therefore vulnerable, infrastructure during pre-sortie
operations, and the understanding that a prioritisation of active defence measures might
introduce potential shortcomings in base defence. The study aims to reinforce the
importance of passive measures in airbases’ defence matrices to relevant parties.
Consistent with earlier work in this field (Bracken, 1986; Holliday, 1990; Liu et al., 2022;
Trzun & Vrdoljak, 2020), the simulation proposed in this design uses a probabilistic Monte
Carlo framework. The simulation, developed in Python coding language (see Appendix A.5)
incorporates dynamic missile targeting, active defence interception mechanics, and
structural damage modelling over multiple attack waves and airbase configurations,
allowing for comparative analyses of HAS- and non-HAS-protected aircraft under variable
threat environments.

A central component of the simulation design is the selection of an appropriate reference
airbase. This study has chosen to utilise Amari airbase, Estonia, as the testbed for analysis,
based on several operational factors that make it emblematic of the challenges facing
NATO's forward-deployed air infrastructure in Eastern Europe. Geographically, the




airbase’s proximity to the Russian border (~200km) places it within the engagement
envelope of a broad spectrum of Russian PGMs, including short- to medium-range ballistic
missiles and cruise missiles, allowing for the realistic modelling of compressed threat-
warning timelines and the testing of HAS efficacy under broader saturation conditions.

Image 1
Geographical location of Amari Airbase

E 21:30:
‘ E28°30'  E29%3

Google Earth’

In addition, Amari serves as one of the primary operating locations for the Baltic Air Policing
(BAP) missions (NATO Allied Air Command Public Affairs Office, 2025b, paras. 2, 1) and
therefore regularly hosts rotational deployments of 4" and 5™"-generation fighter aircraft
from allied states (NATO Allied Air Command Public Affairs Office, 20253, paras 3, 6.),
making it a presumptive critical target in pre-emptive strike scenario’s, it serves well as a
representative case for broader NATO air infrastructure across the Eastern flank. As such,
insights derived from simulations involving Amari are not merely site-specific but may be
broadly applicable to similarly configured NATO installations across Northern and Eastern
Europe. This generalisability enhances the utility of the simulation results in informing
alliance-wide infrastructure resilience and defence planning.

The basic layout of Amari has been extracted from Google Earth using the manual creation
of polygons and converted into a. shv-file for use in Python, creating a near 1:1




representation (see figure XX). On this two-dimensional model, entities (e.g. HAS structures,
exposed aircraft) are assigned spatial coordinates based on the locations of aircraft aprons
(3 in total, 25 parking spaces) and HAS (3 clusters, 21 total). Structural parameters, such as
hardness thresholds and splash-damage vulnerability radii, are included as well. The core
of the analysis is built on discrete-event simulation, wherein each missile-entity is
processed sequentially during an attack-wave. Monte Carlo iterations are then used to
allow for the random sampling of targeting choices, impact location, and interception
outcomes variables, allowing the simulation to reflect the stochastic nature of airbase
conflict and accommodate for the significant uncertainty inherent to strike accuracy and
damage effects.

Image 2
Visual Representation of Amari Air Base

Amari Air Base, Estonia

59.280

59.275 4

59.270 1

59.265 1

59.260 4

Latitude

59.255 4

59.250 1

59.245 1

59.240 T T T T T T T T
24,16 24.17 24,18 24,19 24.20 24.21 24.22 2423 24.24 24.25

Longitude




Image 3
Amari Air Base Facilities

(Large - small)__ . _South

NE Apron

HAS Cluster
North

P — e ——
SW-Aprons HAS Cluster .

F 7]

[




3. Targeting & Impact Probability Modelling

The simulation includes four distinct assets that are targeted by missiles:

Table 1
Target Dimensions and Weights
Target Type Target Radius (m) Target Weight  Weight Rationale
Exposed fighters 5.35; based on F-35 2 Higher priority than protected
(wingspan / 2) fighters due to ease of
destruction and value.
HAS-protected 30; based on Amari HAS 1 Lowest priority due to hardened
fighters dimension (HAS-length / 2) protection, reducing the
likelihood of kill.
Tanker aircraft 30; based on Airbus A330 3 High operational value as force
MRTT (wingspan / 2) multipliers.
AWACS 22; based on Boeing E-3 6 Highest strategic value; key
Sentry (wingspan / 2) enabler of air superiority; limited
availability.

The individual missiles modelled by the simulation are assigned to targets through a
weighted random function. The probability of selecting a given target is determined by
target value weight (V) and missile-type specific priorities (Am). For each missile (m), the
probability of being assigned to target (t;) is computed as:

th &3 Am

n
i=1 Vtk * Am,i

Ptarget (tj) =

In this case, Am is a scalar reflecting missile specific preference. Missile preferences are
based on the type of missile modelled by the simulation.

Table 2

Missile Types and Specifications

Missile CEP (m) Warhead (kg) Value weight Weight Rationale
type

Iskander-M ' 50 700 5 High warhead mass

m allows reliable HAS

destruction; good for




all target types
including hardened.
Iskander-K = 50 480 3 Insufficient warhead
M to guarantee HAS Kkill;
moderate accuracy
and payload reduce
effectiveness against
hardened targets.
P-800 1.5 300 4 Excellent accuracy
) makes it suitable for
high-value soft targets
(AWACS, tankers); not

ideal for HAS.
Kalibr 12 400 3 Accurate but lacks
3) HAS-Kill warhead;

suited for exposed or
semi-hardened

targets.
Kh-101 15 450 3 Precise, but sub-
4) 500kg warhead limits

utility against HAS.
Better for exposed
fighters and support

aircraft.
OTR-21 150 482 2 Poor accuracy and
5 insufficient warhead

for HAS; mostly useful
against area targets or

in saturation roles.
1. Center for Strategic and International Studies (2024a) 5. Center for Strategic and International Studies (2024c)
2. Vermylen (2017)
3. Missile Defense Advocacy Alliance (2017)
4. Center for Strategic and International Studies (2024b)

Once a target is assigned, the probability of a successful hit within the radius of the target
is modelled using a Gaussian function based on the missile’s Circular Error Probable (CEP)'.
The missiles’ impact error is sampled from a two-dimensional normal distribution, centred

T A missile’s CEP is the radius within which 50% of munitions are expected to land, centered on the aimpoint (essentially
a 50% confidence interval for targeting accuracy). For example, a CEP of 100 m means half of the munitions will land
within 100 m of the target point.




on the target, with the standard deviation derived from missile system CEP specifications.
The cumulative probability of hitting a target within the effective radius (ry) is approximated
as

2
Ppiy =1— e(_(k*?EP) =In(2))
Where:

- retarget radius

- In(2)=0.6931

- k=1.774,(conversion factor derived from Rayleigh’s cumulative distribution function
(Fry = 1 — e7*°/29%), so that missiles striking chance within the CEP = always 0.5*my)

4. Kill Logic

The damage assessment after a missile strike follows a dual-mode function that
distinguishes between exposed aircraft and HAS-protected aircraft. Exposed aircraft are
considered to be destroyed when struck directly (i.e. within rz) or when subjected to
sufficient overpressure/fragmentation damage from nearby impacts (see Roes). In contrast,
HAS shelters are engineered to withstand specific warhead masses and/or a defined
number of repeated impacts. Analysis by Swisdak et al. (1994) reports resistance to
warheads of approximately 430 kg, albeit with structural damage indicative of imminent
failure. Given the classified nature of NATO STANAG specifications governing HAS
construction, this simulation adopts a nominal destruction threshold of 500 kg. Under this
assumption, HAS structures are modelled as capable of withstanding munitions below 500
kg, though such impacts still inflict cumulative structural degradation. This degradation is
recorded via a damage counter, accounting for both blast effects from nearby detonations
(see "Rpiast”) Or direct hits

D « D+ ax W,
Where:

- Dtis the accumulated damage counter,
- Wmis the missile’s warhead mass;

- Qs a scaler which models the impact energy weakening due to HAS's reinforced

nature.




Once the accumulated damage exceeds the hardness threshold (H/500kg), a probabilistic
destruction check is performed

,if Di = H
Pkiu={pft ‘

0 otherwise

Where:

- Punis the probability of kill;
- Htis the hardness threshold (500kg);
- pisthe kill probability when the shelter has been breached (0.8 in this simulation.

When a missile fails to hit its target, the simulation employs a physics-based blast damage
model grounded in cube-root scaling, derived from explosive energy dispersion physics
per the Taylor-Sedov solution. Unlike simplified linear or square-root models, this approach
aims to capture the three-dimensional nature of blast propagation. The blast radius is
calculated as

3
Ryiast = ,8 * Wi
Where:

- Wnis TNT-equivalent of missile warhead,
- PBis an empirical scaling factor, denotating a three-zone damage model:
o Lethalzone (3 * 3/W,,): (High destruction probability due to overpressure and
thermal effects.
o Damage zone (5 * M): Moderate structural damage with decreasing
probability by distance.
o Fragment zone (8 = 3/W,): Outer region affected by fragments and light
damage.

Damage probability is modelled with continuous, distance-based functions, not binary
thresholds, and incorporates target-specific vulnerability factors. For instance, exposed
aircraft have a vulnerability of 1.0, while hardened aircraft shelters (HAS) reduce
vulnerability to 0.25 due to structural protection. Warhead types are differentiated by TNT
equivalency factors,e.g., Fuel-Air Explosive warheads (FAE) = 1.3, Fragmentation warheads
(FRAG) = 0.7, reflecting varying overpressure, fragment spread, or penetration behaviour.
Compared to linear models, the inclusion of cube-root scaling results in significantly




realistic and thus larger affected areas. For example, a 700 kg Iskander-M warhead will yield
a lethal damage radius of >26m, damage radius of >44m, and a fragment zone of >71m.

5. Interception modelling

The simulation includes a basic air defence component, representing SAM batteries, in this
case X Patriot batteries, each with X launchers with a capacity for X missiles. Amari is
assigned a fixed number of interceptors per run, divided equally across missile waves. Each
incoming missile is assigned an interception probability (Pintercepr), Which is modified by
missile priority (i.e. heavier warheads are more likely to be prioritized). Interception success
itself is modelled as a Bernoulli trial for each missile

L, = Bernoulli(PinteTcept)

If Im = 1, the missile is neutralized, and no further impact is processed. Once the pool of
available interceptors is exhausted, subsequent missiles proceed unimpeded, allowing the
simulation to not only capture saturation effects, but exhaustion effects as well.

6. Scenario Parameters

This study models and compares two airbase defence configurations at Amari Air Base. In
the baseline scenario the airbase maintains its current operational configuration. The
aircraft inventory totals 34, dispersed between exposed apron areas and existing HAS
infrastructure. Eighteen aircraft remain exposed, including seven fighters on the northeast
apron, four large support aircraft, comprised of one Boeing E-3 AWACS and three Airbus
A330 MRTTs on the south large apron, four fighters on the south small apron, and three
fighters on the south-southeast apron. The remaining fifteen aircraft are housed within
HAS, including five in the northwest cluster and ten distributed across other HAS locations
on the base. Additionally, four HAS remain intentionally empty to serve as decoys, intended
to mislead enemy targeting algorithms. The incoming missile threat in both scenarios
comprises thirty-four precision-guided munitions, ten Iskander-Ms, ten Iskander-Ks, five
OTR-21s, five Kh-101 cruise missiles, two Kalibr missiles, and two P-800s. This threat
package maintains an approximate 1:1 missile-to-aircraft ratio, aligned with doctrinal
principles for overwhelming airbase defences and ensuring strike redundancy. The




enhanced scenario modifies this setup by relocating four fighters from exposed apron
positions into newly activated HAS, bringing the total number of sheltered aircraft to
nineteen and reducing the exposed count to fourteen. The total number of aircraft and
decoy shelters remains unchanged. This enhanced configuration models a more robust
passive defence strategy without altering the base’s active defence systems.

7. Defensive Parameters and Simulation Design

Both scenarios utilise identical active defences to isolate the impact of changes in HAS
utilisation. The airbase is defended by a Patriot battery composed of six launchers with a
total of twenty-four interceptors. Each interceptor engagement has a 41 percent success
probability. The simulated attacks are structured into six waves, and heavier missiles (those
with warheads 500 kilograms) are prioritised for interception. To analyse the outcomes,
each scenario is subjected to 10,000 Monte Carlo iterations, allowing for comprehensive
modelling of stochastic variation in missile targeting, blast effects, interception outcomes,
and aircraft survival.

Table 3

Scenario Parameters

Parameter Scenario 1 Scenario 2
Aircraft in HAS 15 19
Aircraft Exposed 19 15

Empty HAS structures 4 4

Total Interceptors 34 34
Defence-Interception Rate 41% 41%

8. Results and Analysis

The simulation reveals stark differences in aircraft survivability across the two scenarios. In
the baseline case, scenario 1, an average of 11.94 aircraft are destroyed per attack,
representing approximately 35.1 percent of the total fleet. Of these, around 7.75 losses
occur among exposed aircraft, while 4.19 are attributed to hits on HAS-protected assets.
This yields a loss ratio of approximately 1.85 to 1 between exposed and HAS-sheltered
aircraft, confirming the protective value of hardened shelters even under intense




bombardment. By comparison, the enhanced scenario (scenario 2) achieves measurable
improvement. Aircraft losses fall to an average of 11.39 per attack, or 34.5 percent of total
aircraft. The exposed segment sees a reduced loss of 5.55 aircraft, while losses among
HAS-protected aircraft drop to 3.61. This shifts the exposed-to-HAS loss ratio to 1.54 to 1,
indicating that beyond simple numerical sheltering gains, increased HAS density provides
a compounding benefit to overall survivability.

Further analysis of HAS performance in the baseline configuration shows considerable
variability in protection outcomes depending on shelter location. Some HAS positions
suffer destruction rates as high as 67 percent, while others remain as low as 21 percent.
These differences are attributed to proximity to high-value targets and repeated targeting
within missile salvos. On average, shelters sustaining heavy losses were hit 1.8 to 2.1 times
per simulation run, approaching or surpassing structural damage thresholds modelled for
cumulative impacts. In contrast, the enhanced scenario demonstrates improved
survivability across nearly all HAS positions. The additional shelters dilute missile targeting
probability, with most HAS experiencing destruction rates below 40 percent. However, this
benefit exhibits diminishing returns. As shelter numbers increase, the marginal protective
gain declines, suggesting that beyond a certain density, the strategic benefit of adding more
HAS tapers off. Splash damage contributes to the destruction of 1.2 to 1.5 aircraft per
scenario, primarily affecting exposed aircraft near direct impact zones. Larger warheads,
particularly the 700kg Iskander-M, produce blast radii exceeding 100 meters, creating
overlapping damage areas on crowded aprons. HAS-protected aircraft fare significantly
better in this regard, showing vulnerability levels approximately one-quarter that of their
exposed counterparts. In high-density apron areas, this differential survivability becomes
even more pronounced, with single missile strikes often resulting in multiple aircraft losses.

Evaluating missile type effectiveness, the simulation confirms that heavy ballistic missiles
like the Iskander-M are the most capable of defeating HAS protection, averaging 2.1 aircraft
kills per missile when blast effects are included. Their payloads exceed the modelled HAS
hardening threshold, making them the primary threat to sheltered assets. Precision cruise
missiles such as the P-800, Kalibr, and Kh-101, while less effective against HAS, excel at
targeting exposed high-value assets. These missiles demonstrate destruction probabilities
above 80 percent when directed at unprotected AWACS or tanker aircraft, with targeting
algorithms correctly prioritising such assets.




The PATRIOT system provides moderate but insufficient mitigation. On average, 14 to 15
missiles are intercepted per scenario, roughly 41 percent of incoming threats. While
prioritisation of heavier missiles slightly improves HAS survival, the overall defence remains
saturated. With 34 inbound munitions and only 24 interceptors, at least 10 missiles
inevitably penetrate the system, reinforcing the limitations of active defence during
saturation strikes. Empty HAS used for deception show meaningful, albeit limited, impact.
Each decoy shelter attracts between 0.8 and 1.2 missile strikes per simulation, and
destruction rates of 40 to 50 percent suggest that enemy targeting systems are partially
deceived. However, the limited number of decoys constrains their overall contribution to
survivability. The results imply that expanding the number of decoy shelters could serve as
a cost-effective way to increase base resilience due to defence economics and fog of war
dynamics.

9. Strategic Implications

The enhanced HAS configuration produces a modest yet meaningful improvement in
survivability: a 4.6 percent increase overall, with 0.55 more aircraft surviving per attack, on
average. Though seemingly minor in percentage terms, this gain carries significant
operational weight, considering the high cost and limited availability of modern combat
aircraft. More importantly, the simulation reveals that HAS effectiveness is not strictly linear.
Adding shelters not only reduces the number of exposed aircraft but also produces
beneficial distributed effects that improve the survivability of all assets on base. The
improved loss ratios and reduced splash damage in the enhanced scenario suggest that
greater HAS utilisation contributes to a more resilient defence posture across the board.
These findings affirm the relevance of Cold War-era passive defence infrastructure in
modern threat environments. They also highlight the necessity for adaptive strategies that
integrate hardened shelters, realistic deception, and active defence systems. Under
saturation strike conditions, reliance on a single line of defence is inadequate. Instead,
survival depends on a layered approach that maximises protection at every level of the
engagement envelope.




Table 4
Scenario Comparison

Metric Scenario 1 Scenario 2 Change
Valid Simulation Runs 10.000 10.000 N/A
Avg. Aircraft Lost per Attack 11.94 (35.1%) 11.39 (34.5%) 1 0.55 aircraft (-4.6%)
Exposed Aircraft Losses (avg) 7.75 5.55 122
HAS Aircraft Losses (avg) 419 3.61 10.58
Exposed-to-HAS Loss Ratio 1.85:1 1.54:1 Improved survivability
Missiles Intercepted (avg) 14-15 (41% 14-15 (41%  No change
intercept rate) intercept rate)
Minimum Missiles Penetrating =10 >10 No change
Defences
Avg. Splash Damage Aircraft Losses 1.35 1.20 1 0.15 due to reduced
clustering
HAS Destruction Rate Range 21% - 67% 18% - 39% | overall
Avg. Missile Hits on Vulnerable HAS 1.95 1.50 | 0.45 due to shelter
Locations dilution
Avg. Decoy HAS Strikes per Simulation = 1.00 1.00 No change
Avg. Effectiveness of Heavy Missiles = 2.10 kills/missile 2.00 1 0.10

(e.g., Iskander-M)

High-Value  Exposed Target Kill ~85% ~ 78% | ~ 7% due to reduced
Probability (AWACS/Tanker) exposure

10. Limitations and Future Studies

While the simulation framework developed in this study provides valuable quantitative
insights into the protective value of HAS under saturation missile attack conditions, several
limitations constrain the scope and generalisability of the findings. First, the simulation
relies on open-source or nominal data for HAS hardness thresholds, warhead effects, and
missile system performance. Classified specifications for NATO-standard shelters and
weapon systems could meaningfully alter modelled survivability outcomes. Similarly, the
assumed 500 kg hardening threshold and cumulative damage model represent a plausible
but simplified proxy for real-world structural performance, which may vary with




construction quality, warhead type, and impact geometry. Second, the model does not
incorporate detailed logistics, maintenance, and operational sortie generation constraints
that could affect post-attack airbase functionality. Survival of aircraft in the simulation
equates to asset availability, but damaged runways, fuel depots, or maintenance facilities
might render surviving aircraft temporarily unusable. The results therefore represent a
best-case estimate of post-strike force availability. Third, the active defence modelling uses
a static 41 percent interception probability and fixed missile prioritisation logic. Real-world
performance would be influenced by sensor coverage, engagement doctrine, decoy
discrimination, and adversary countermeasures, all of which could shift the balance
between active and passive defence effectiveness. The enemy targeting algorithms in the
simulation also employ fixed weights rather than adaptive or learning behaviours, which
underrepresents the capacity of advanced ISR and strike systems to optimise targeting
over successive salvos.

Future studies could address these limitations in several ways. Expanding the model to
include runway cratering, fuel infrastructure targeting, and repair timelines would provide
a more holistic measure of operational resilience. Enhancing adversary targeting logic with
adaptive algorithms could better simulate an intelligent, learning opponent. Sensitivity
analyses on interceptor allocation, decoy density, and dispersal strategies would illuminate
cost-effective combinations of passive and active defences. Finally, considering the
strategic developments of warfare, future simulations should include drones alongside
PGMs, reflecting their growing role in reconnaissance, target designation, and direct attack.
The integration of loitering munitions, swarming tactics, and unmanned strike platforms
could significantly alter airbase vulnerability profiles, particularly by saturating defences,
exploiting detection gaps, and targeting high-value assets with lower-cost systems.




Bibliography

ASD Europe. (2024). Research & development.

https://www.asd-europe.org/news-media/facts-fisures/research-development/

Bracken, J. (1986). Monte Carlo Layered Defense Model (No. ADA175217). Defence Technical
Information Center.

https://apps.dtic.mil/sti/citations/ADA175217

Center for Strategic and International Studies. (2024a). 9K720 Iskander (SS-26) | Missile
Threat. CSIS Missile Threat.

https://missilethreat.csis.org/missile/ss-26-2/

Center for Strategic and International Studies. (2024b). KH-101 / KH-102 | Missile Threat.
Missile Threat.

https://missilethreat.csis.org/missile/kh-101-kh-102/

Center for Strategic and International Studies. (2024c). OTR-21 Tochka (SS-21) | Missile
threat. Missile Threat.

https://missilethreat.csis.org/missile/ss-21/

Department of the Air Force. (2025). Budget Request Fiscal Year 2026.

https://www.saffm.hg.af.mil/FM-
Resources/Budget/#:~:text=The%20FY%202026%20U.5.%20The,many%200f%20the%20c
ore%20functions.



https://www.asd-europe.org/news-media/facts-figures/research-development/
https://apps.dtic.mil/sti/citations/ADA175217
https://missilethreat.csis.org/missile/ss-26-2/
https://missilethreat.csis.org/missile/kh-101-kh-102/
https://missilethreat.csis.org/missile/ss-21/
https://www.saffm.hq.af.mil/FM-Resources/Budget/#:~:text=The%20FY%202026%20U.S.%20The,many%20of%20the%20core%20functions.
https://www.saffm.hq.af.mil/FM-Resources/Budget/#:~:text=The%20FY%202026%20U.S.%20The,many%20of%20the%20core%20functions.
https://www.saffm.hq.af.mil/FM-Resources/Budget/#:~:text=The%20FY%202026%20U.S.%20The,many%20of%20the%20core%20functions.

EBESCO. (2022). Antiballistic missile defense systems.

https:.//www.ebsco.com/research-starters/military-history-and-science/antiballistic-

missile-defense-systems

Ellis, R. W. (2016). Building the Future Air Force: Analysis of Platform versus Weapon
Development [Monograph]. United States Army Command and General Staff College.

https://apps.dtic.mil/sti/tr/pdf/AD1021962.pdf

Global Security. (n.d.). Chapter 4. Passive Air Defense Measures.

https://www.globalsecurity.org/military/library/policy/army/fm/44-8/ch4.htm

Gluck, M. (2024, April 23). 9K720 Iskander (SS-26) | Missile Threat. Missile Threat.

https://missilethreat.csis.org/missile/ss-26-2/

Holliday, M. R. (1990). Methodology of an event-driven Monte Carlo missile simulation.
Mathematical and Computer Modelling, 14, 1123-1128.

https://doi.org/10.1016/0895-7177(90)90352-n

Jepma, L. (2025, July 2). A new chapter for the Royal Netherlands Air Force: 112 years of history
and a leap into the future. Nederlands Lucht- En Ruimtevaartcentrum.

https://www.nlr.org/newsroom/nieuws/royal-netherlands-air-force-112-years-of-
history/#:~text=For%20NLR%2C%20this%20strong%20commitment,Keuning%2C%20Dir
ector%20Space%20at%20NLR.



https://www.ebsco.com/research-starters/military-history-and-science/antiballistic-missile-defense-systems
https://www.ebsco.com/research-starters/military-history-and-science/antiballistic-missile-defense-systems
https://apps.dtic.mil/sti/tr/pdf/AD1021962.pdf
https://www.globalsecurity.org/military/library/policy/army/fm/44-8/ch4.htm
https://missilethreat.csis.org/missile/ss-26-2/
https://doi.org/10.1016/0895-7177(90)90352-n
https://www.nlr.org/newsroom/nieuws/royal-netherlands-air-force-112-years-of-history/#:~:text=For%20NLR%2C%20this%20strong%20commitment,Keuning%2C%20Director%20Space%20at%20NLR.
https://www.nlr.org/newsroom/nieuws/royal-netherlands-air-force-112-years-of-history/#:~:text=For%20NLR%2C%20this%20strong%20commitment,Keuning%2C%20Director%20Space%20at%20NLR.
https://www.nlr.org/newsroom/nieuws/royal-netherlands-air-force-112-years-of-history/#:~:text=For%20NLR%2C%20this%20strong%20commitment,Keuning%2C%20Director%20Space%20at%20NLR.

Karako, T, & Williams, I. (2017). The Missile Defense Review: Insufficient for Complex and
Integrated Attack. Strategic Studies Quarterly, 3(2), 3-15.

https://www.jstor.org/stable/266396707casa token=i114U6PoOtkAAAAA%IAPDLKI3U3HG
DkMgsHmMNs5BESmkiuebw8Rsx-

id80Ob71LCmbzsDwwsdrOjZSKwlGaljtvmUXr EW9krHWyG5M9x9|BUzrwSP1gLgnhFySEZ9a
KNDcokX0&seq=1

Kostis, T. (2024). The Future of Stealth Military Doctrine. JFQ, 116(1).

https://digitalcommons.ndu.edu/cgi/viewcontent.cgizarticle=1199&context=joint-force-
quarterly

Liu, Y., Xiong, Z., Wang, J., & Wang, D. (2022). Monte Carlo-Based analysis and experimental
validation of the Interception-Damage probability of the new active interception Net.
Mathematical Problems in Engineering, 2022, 1-12.

https://doi.org/10.1155/2022/5438023

Lunday, C., & Groeneveld, J. (2025, July 11). Germany weighs buying more F-35 fighter jets
from the US. POLITICO.

https://www.politico.eu/article/germany-plan-buy-f35-fighter-jet-united-states/

Missile Defence Advocacy Alliance. (n.d.). P-800 ONIKS (SS-N-26 Strobile).

https://missiledefenseadvocacy.org/missile-threat-and-proliferation/todays-missile-
threat/russia/16962-2/

Morgan, H. (2021, September 6). The primacy of passive air defense. Modern War Institute.

https://mwi.westpoint.edu/the-primacy-of-passive-air-defense/



https://www.jstor.org/stable/26639670?casa_token=i114U6PoOtkAAAAA%3ApbKt3U3HGDkMqsHmns5BESmkiue6w8Rsx-id8Ob71LCmbzsDvvsdr0jZSKwlGaIjtvmUXr_EW9krJHWyG5M9x9JBUzrwSP1gLqnhFySEZ9aKNDc6kX0&seq=1
https://www.jstor.org/stable/26639670?casa_token=i114U6PoOtkAAAAA%3ApbKt3U3HGDkMqsHmns5BESmkiue6w8Rsx-id8Ob71LCmbzsDvvsdr0jZSKwlGaIjtvmUXr_EW9krJHWyG5M9x9JBUzrwSP1gLqnhFySEZ9aKNDc6kX0&seq=1
https://www.jstor.org/stable/26639670?casa_token=i114U6PoOtkAAAAA%3ApbKt3U3HGDkMqsHmns5BESmkiue6w8Rsx-id8Ob71LCmbzsDvvsdr0jZSKwlGaIjtvmUXr_EW9krJHWyG5M9x9JBUzrwSP1gLqnhFySEZ9aKNDc6kX0&seq=1
https://www.jstor.org/stable/26639670?casa_token=i114U6PoOtkAAAAA%3ApbKt3U3HGDkMqsHmns5BESmkiue6w8Rsx-id8Ob71LCmbzsDvvsdr0jZSKwlGaIjtvmUXr_EW9krJHWyG5M9x9JBUzrwSP1gLqnhFySEZ9aKNDc6kX0&seq=1
https://digitalcommons.ndu.edu/cgi/viewcontent.cgi?article=1199&context=joint-force-quarterly
https://digitalcommons.ndu.edu/cgi/viewcontent.cgi?article=1199&context=joint-force-quarterly
https://doi.org/10.1155/2022/5438023
https://www.politico.eu/article/germany-plan-buy-f35-fighter-jet-united-states/
https://missiledefenseadvocacy.org/missile-threat-and-proliferation/todays-missile-threat/russia/16962-2/
https://missiledefenseadvocacy.org/missile-threat-and-proliferation/todays-missile-threat/russia/16962-2/
https://mwi.westpoint.edu/the-primacy-of-passive-air-defense/

NATO. (2018). NATO’s Joint Air Power Strategy.

https://www.nato.int/cps/fr/natohg/official texts 156374.htm?selectedLocale=en

NATO. (2025). NATO Air Policing.

https://www.nato.int/cps/en/natohg/topics 132685.htm

NATO Allied Air Command Public Affairs Office. (2025a). Estonian and Dutch collaborate
during Agile Combat Employment training at Amari, Estonia.

https://ac.nato.int/archive/2025-2/estonian-and-dutch-collaborate-during-agile-combat-

employment-training-at-aamari--estonia

NATO Allied Air Command Public Affairs Office. (2025b). NATO’s Air Policing Mission: A
Steadfast Commitment by the Alliance.

https://ac.nato.int/archive/2025-2/natos-air-policing-mission-a-steadfast-commitment-by-

the-alliance-
#:~text=A%20notable%200perational%20highlieht%200ccurred,Air%20and%20Missile%
20Defence%20System.

Pettyjohn, S. L. (2022, January 10). Spiking the Problem: Developing a Resilient Posture in the
Indo-Pacific with Passive Defenses - War on the Rocks. War on the Rocks.

https://warontherocks.com/2022/01/spiking-the-problem-developing-a-resilient-posture-

in-the-indo-pacific-with-passive-
defenses/#:~:text=Passive%20defenses%20minimize%20the%20damage,before%20it%2
Oreaches%20its%20target.

Piatkowski, M., Piatkowski, M., & Gozdziewicz, W. (2024, September 6). Precautions and
aerial superiority or supremacy. Lieber Institute West Point.

https://lieber.westpoint.edu/precautions-aerial-superiority-supremacy/



https://www.nato.int/cps/fr/natohq/official_texts_156374.htm?selectedLocale=en
https://www.nato.int/cps/en/natohq/topics_132685.htm
https://ac.nato.int/archive/2025-2/estonian-and-dutch-collaborate-during-agile-combat-employment-training-at-aamari--estonia
https://ac.nato.int/archive/2025-2/estonian-and-dutch-collaborate-during-agile-combat-employment-training-at-aamari--estonia
https://ac.nato.int/archive/2025-2/natos-air-policing-mission-a-steadfast-commitment-by-the-alliance-#:~:text=A%20notable%20operational%20highlight%20occurred,Air%20and%20Missile%20Defence%20System.
https://ac.nato.int/archive/2025-2/natos-air-policing-mission-a-steadfast-commitment-by-the-alliance-#:~:text=A%20notable%20operational%20highlight%20occurred,Air%20and%20Missile%20Defence%20System.
https://ac.nato.int/archive/2025-2/natos-air-policing-mission-a-steadfast-commitment-by-the-alliance-#:~:text=A%20notable%20operational%20highlight%20occurred,Air%20and%20Missile%20Defence%20System.
https://ac.nato.int/archive/2025-2/natos-air-policing-mission-a-steadfast-commitment-by-the-alliance-#:~:text=A%20notable%20operational%20highlight%20occurred,Air%20and%20Missile%20Defence%20System.
https://warontherocks.com/2022/01/spiking-the-problem-developing-a-resilient-posture-in-the-indo-pacific-with-passive-defenses/#:~:text=Passive%20defenses%20minimize%20the%20damage,before%20it%20reaches%20its%20target.
https://warontherocks.com/2022/01/spiking-the-problem-developing-a-resilient-posture-in-the-indo-pacific-with-passive-defenses/#:~:text=Passive%20defenses%20minimize%20the%20damage,before%20it%20reaches%20its%20target.
https://warontherocks.com/2022/01/spiking-the-problem-developing-a-resilient-posture-in-the-indo-pacific-with-passive-defenses/#:~:text=Passive%20defenses%20minimize%20the%20damage,before%20it%20reaches%20its%20target.
https://warontherocks.com/2022/01/spiking-the-problem-developing-a-resilient-posture-in-the-indo-pacific-with-passive-defenses/#:~:text=Passive%20defenses%20minimize%20the%20damage,before%20it%20reaches%20its%20target.
https://lieber.westpoint.edu/precautions-aerial-superiority-supremacy/

Pilgrim, L. (2025, July 4). The UK’s F-35 Procurement Strategy: A Balancing Act. Wavell Room.

https://wavellroom.com/2025/07/04/the-uks-f-35-procurement-strategy-a-balancing-act/

Priebe, M., Vick, A. J., Heim, J. L., & Smith, M. L. (2019, July 17). Distributed Operations in a
Contested Environment: Implications for USAF Force presentation. RAND.

https://www.rand.org/pubs/research reports/RR2959.html

Richardson, I. D. (2025). Protecting ACE: Air Defence and Agile Combat Employment. JFQ,
117(2).

https://digitalcommons.ndu.edu/cgi/viewcontent.cgizarticle=1243&context=joint-force-
quarterly

Schwirtz, M. (2022). Damage in Air Base Blasts Appears Worse Than Russia Claimed. The
New York Times.

https://www.nvtimes.com/live/2022/08/10/world/ukraine-russia-news-war

Swisdak, M. M., Jacobs, E. M., & Ward, J. M. (1994). Hazard Ranges for Small Net Explosive
Quantities in Hardened Aircraft Shelters. DTIC.

https://apps.dtic.mil/sti/pdfs/ADAS07453.pdf

Trzun, Z., & Vrdoljak, M. (2020). Monte Carlo Simulation of Missile Trajectories Dispersion
due to Imperfectly Manufactured Warhead. In Annals of DAAAM for . . . & proceedings of the .
.. International DAAAM Symposium (pp. 0574-0583).

https://doi.org/10.2507/31st.daaam.proceedings.079



https://wavellroom.com/2025/07/04/the-uks-f-35-procurement-strategy-a-balancing-act/
https://www.rand.org/pubs/research_reports/RR2959.html
https://digitalcommons.ndu.edu/cgi/viewcontent.cgi?article=1243&context=joint-force-quarterly
https://digitalcommons.ndu.edu/cgi/viewcontent.cgi?article=1243&context=joint-force-quarterly
https://www.nytimes.com/live/2022/08/10/world/ukraine-russia-news-war
https://apps.dtic.mil/sti/pdfs/ADA507453.pdf
https://doi.org/10.2507/31st.daaam.proceedings.079

UK MQOD. (2021). Joint Doctrine Publication 0-30.

https://assets.publishing.service.gov.uk/media/636baad0d3bf7/f1649c4e36d/UK Air Powe
r JDP 0 30.pdf

US DOD. (2015). Joint Publication 1-02: Dictionary of Military and Associated Terms.

https://irp.fas.org/doddir/dod/jp1 02.pdf

Van Hooft, P., & Boswinkel, L. (2019). Surviving the Deadly Skies: Integrated Air and Missile
Defence 2021-2035 (No. 9789492102898). The Hague Centre for Strategic Studies.

https://www.researchgate.net/publication/356981510 Surviving the Deadly Skies Integra
ted Air and Missile Defence 2021-2035

Vermylen, M. (2017). P-800 OnlkS (SS-N-26 Strobile). Missile Defense Advocacy Alliance.

https://missiledefenseadvocacy.org/missile-threat-and-proliferation/todays-missile-
threat/russia/16962-2/

Wilkening, D. A. (2000). A simple model for calculating ballistic missile defence effectiveness.
Science and Global Security, 8(2), 183-215.

https://doi.org/10.1080/08929880008426475

Zeigler, S. M., Phillips, D., Hoehn, J., Hagem, J., Edenfield, N., Hill, D., & Doll, A. (2025). Assessing
Progress on Air Base Defence (No. RRA3142-1).

https://www.rand.org/content/dam/rand/pubs/research reports/RRA3100/RRA3142-
1/RAND RRA3142-1.pdf



https://assets.publishing.service.gov.uk/media/636baad0d3bf7f1649c4e36d/UK_Air_Power_JDP_0_30.pdf
https://assets.publishing.service.gov.uk/media/636baad0d3bf7f1649c4e36d/UK_Air_Power_JDP_0_30.pdf
https://irp.fas.org/doddir/dod/jp1_02.pdf
https://www.researchgate.net/publication/356981510_Surviving_the_Deadly_Skies_Integrated_Air_and_Missile_Defence_2021-2035
https://www.researchgate.net/publication/356981510_Surviving_the_Deadly_Skies_Integrated_Air_and_Missile_Defence_2021-2035
https://missiledefenseadvocacy.org/missile-threat-and-proliferation/todays-missile-threat/russia/16962-2/
https://missiledefenseadvocacy.org/missile-threat-and-proliferation/todays-missile-threat/russia/16962-2/
https://doi.org/10.1080/08929880008426475
https://www.rand.org/content/dam/rand/pubs/research_reports/RRA3100/RRA3142-1/RAND_RRA3142-1.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RRA3100/RRA3142-1/RAND_RRA3142-1.pdf

APPENDIX

A1

Scenario 1 Output

Manual HAS Assignment 1534 (44.1%)
Manual EXPOSED Assignment 1934 (55.9%)
Empty HAS Structures 4

Total Aircraft 34

Total Structures 38

Total Missiles 34

Valid Simulation Runs 10000

DESTRUCTION SUMMARY
Aircraft Destroyed 9.15
- In HAS 0.09
- Exposed 9.05
- From Splash 7.06
Empty HAS Destroyed 0.02

BY MISSILE TYPE
Iskander-K 2.94 destroyed, 3.45 intercepted, 0.00 skipped
Kalibr 1.54 destroyed, 0.91 intercepted, 0.00 skipped
Iskander-M 0.08 destroyed, 4.49 intercepted, 0.00 skipped
P-800 3.59 destroyed, 0.82 intercepted, 0.00 skipped
OTR-21 0.14 destroyed, 1.72 intercepted, 0.00 skipped
Kh-101 0.88 destroyed, 0.00 intercepted, 0.00 skipped

BY AIRCRAFT TYPE
tanker 2.38
awacs 0.81
fighterEXP 5.87
fighterHAS 0.09

HAS DAMAGE ANALYSIS
HAS 20 (fighterHAS) 0.32 avg hits, 0.7% destruction rate
HAS 21 (fighterHAS) 0.32 avg hits, 0.5% destruction rate
HAS 22 (fighterHAS) 0.32 avg hits, 0.5% destruction rate
HAS 23 (fighterHAS) 0.32 avg hits, 0.6% destruction rate
HAS 24 (fighterHAS) 0.32 avg hits, 0.5% destruction rate
HAS 25 (fighterHAS) 0.31 avg hits, 0.5% destruction rate
HAS 26 (fighterHAS) 0.33 avg hits, 0.6% destruction rate
HAS 27 (fighterHAS) 0.33 avg hits, 0.5% destruction rate




HAS 28 (fighterHAS) 0.33 avg hits, 0.5% destruction rate

HAS 29 (fighterHAS) 0.31 avg hits, 0.5% destruction rate
HAS 30 (fighterHAS) 0.32 avg hits, 0.5% destruction rate
HAS 31 (fighterHAS) 0.31 avg hits, 0.6% destruction rate
HAS 32 (fighterHAS) 0.33 avg hits, 0.9% destruction rate
HAS 33 (fighterHAS) 0.32 avg hits, 1.1% destruction rate
HAS 34 (fighterHAS) 0.33 avg hits, 0.5% destruction rate

EXPOSED AIRCRAFT ANALYSIS

EXPOSED 1 (fighterEXP) 0.08 avg hits [P-800 0.05, Kalibr 0.01, Kh-101 0.01, Iskander-K 0.01], 35.3%
destruction rate, 7.8% direct hits, 27.5% splash kills

EXPOSED 2 (fighterEXP) 0.08 avg hits [Kalibr 0.01, Kh-101 0.01, P-800 0.05, Iskander-K 0.01, OTR-21
0.00], 38.1% destruction rate, 8.0% direct hits, 30.1% splash kills

EXPOSED 3 (fighterEXP) 0.07 avg hits [Iskander-K 0.00, P-800 0.05, Kalibr 0.01, Kh-101 0.01, OTR-21
0.00], 42.3% destruction rate, 7.4% direct hits, 34.9% splash kills

EXPOSED 4 (fighterEXP) 0.07 avg hits [Iskander-K 0.00, P-800 0.05, OTR-21 0.00, Kalibr 0.01, Kh-101
0.01], 46.9% destruction rate, 7.3% direct hits, 39.6% splash kills

EXPOSED 5 (fighterEXP) 0.07 avg hits [P-800 0.04, Kh-101 0.01, Kalibr 0.02, Iskander-K 0.01, OTR-21
0.00], 45.0% destruction rate, 7.1% direct hits, 38.0% splash kills

EXPOSED 6 (fighterEXP) 0.08 avg hits [P-800 0.05, Kalibr 0.01, Iskander-K 0.00, Kh-101 0.01, OTR-21
0.00], 36.1% destruction rate, 7.6% direct hits, 28.4% splash kills

EXPOSED 7 (fighterEXP) 0.08 avg hits [P-800 0.05, Iskander-K 0.00, Kalibr 0.01, Kh-101 0.01, OTR-21
0.00], 31.5% destruction rate, 8.1% direct hits, 23.4% splash kills

EXPOSED 8 (awacs) 0.30 avg hits [Kalibr 0.05, Iskander-K 0.15, P-800 0.05, Kh-101 0.03, OTR-21 0.01],
81.0% destruction rate, 29.9% direct hits, 51.1% splash kills

EXPOSED 9 (tanker) 0.18 avg hits [Iskander-K 0.12, Kalibr 0.03, Kh-101 0.01, P-800 0.02, OTR-21 0.00],
83.7% destruction rate, 18.4% direct hits, 65.3% splash kills

EXPOSED 10 (tanker) 0.19 avg hits [Iskander-K 0.12, Kalibr 0.03, P-800 0.02, Kh-101 0.02, OTR-21
0.01], 82.2% destruction rate, 19.0% direct hits, 63.3% splash kills

EXPOSED 11 (tanker) 0.22 avg hits [Iskander-K 0.13, P-800 0.03, Kalibr 0.03, Kh-101 0.03, OTR-21
0.01], 71.8% destruction rate, 22.4% direct hits, 49.4% splash kills

EXPOSED 12 (fighterEXP) 0.04 avg hits [P-800 0.03, Kalibr 0.01, Iskander-K 0.00, Kh-101 0.00, OTR-21
0.00], 67.8% destruction rate, 4.0% direct hits, 63.8% splash kills

EXPOSED 13 (fighterEXP) 0.05 avg hits [Kalibr 0.01, P-800 0.03, Iskander-K 0.00, Kh-101 0.01, OTR-21
0.00], 57.4% destruction rate, 5.0% direct hits, 52.4% splash kills

EXPOSED 14 (fighterEXP) 0.08 avg hits [P-800 0.05, Kh-101 0.01, Kalibr 0.01, Iskander-K 0.00, OTR-21
0.00], 35.9% destruction rate, 7.6% direct hits, 28.2% splash kills

EXPOSED 15 (fighterEXP) 0.09 avg hits [Iskander-K 0.00, P-800 0.06, Kalibr 0.01, Kh-101 0.01, OTR-21
0.00], 20.7% destruction rate, 8.7% direct hits, 12.0% splash kills

EXPOSED 16 (fighterEXP) 0.08 avg hits [P-800 0.05, Kalibr 0.01, OTR-21 0.00, Iskander-K 0.01, Kh-101
0.01], 32.4% destruction rate, 8.3% direct hits, 24.1% splash kills

EXPOSED 17 (fighterEXP) 0.08 avg hits [Kh-101 0.01, P-800 0.05, Kalibr 0.01, Iskander-K 0.00, OTR-21
0.00], 32.4% destruction rate, 7.9% direct hits, 24.6% splash kills

EXPOSED 18 (fighterEXP) 0.08 avg hits [P-800 0.05, Kalibr 0.01, Kh-101 0.01, Iskander-K 0.01, OTR-21
0.00], 32.4% destruction rate, 8.5% direct hits, 23.9% splash kills




EXPOSED 19 (fighterEXP) 0.08 avg hits [Kalibr 0.01, P-800 0.05, Kh-101 0.01, Iskander-K 0.00, OTR-21
0.00], 32.4% destruction rate, 7.8% direct hits, 24.6% splash kills

EXPOSED SUMMARY
Average destruction rate 47.7%
Average hits per exposed aircraft 0.11
Total direct hit kills 2.01
Total splash kills 7.05

EMPTY HAS ANALYSIS

EMPTY HAS 1 0.14 avg hits [Iskander-K 0.05, Kh-101 0.03, Kalibr 0.03, P-800 0.03, OTR-21 0.00], 0.5%
destruction rate

EMPTY HAS 2 0.15 avg hits [P-800 0.03, Kh-101 0.04, Iskander-K 0.05, Kalibr 0.03, OTR-21 0.00], 0.6%
destruction rate

EMPTY HAS 3 0.15 avg hits [Iskander-K 0.05, P-800 0.03, Kh-101 0.03, Kalibr 0.03, OTR-21 0.00], 0.4%
destruction rate

EMPTY HAS 4 0.14 avg hits [Kh-101 0.03, P-800 0.03, Iskander-K 0.05, Kalibr 0.03, OTR-21 0.00], 0.4%
destruction rate

EMPTY HAS SUMMARY
Average destruction rate 0.5%
Average hits per empty HAS 0.14
Total empty HAS destroyed 0.02
Deception effectiveness 99.5% survival rate

A2

Scenario 2 Output

Manual HAS Assignment: 19/34 (55.9%)
Manual EXPOSED Assignment: 15/34 (44.1%)
Empty HAS Structures: 4

Total Aircraft: 34

Total Structures: 38

Total Missiles: 34

Valid Simulation Runs: 10000

DESTRUCTION SUMMARY:
Aircraft Destroyed: 7.19
- In HAS: 0.08
- Exposed: 7.11
- From Splash: 5.21
Empty HAS Destroyed: 0.02

BY MISSILE TYPE:




Iskander-K: 2.84 destroyed, 3.43 intercepted, 0.00 skipped
Kalibr: 1.19 destroyed, 0.90 intercepted, 0.00 skipped
P-800: 2.37 destroyed, 0.82 intercepted, 0.00 skipped
Kh-101: 0.63 destroyed, 0.00 intercepted, 0.00 skipped
Iskander-M: 0.06 destroyed, 4.48 intercepted, 0.00 skipped
OTR-21:0.13 destroyed, 1.72 intercepted, 0.00 skipped

BY AIRCRAFT TYPE:
tanker: 2.49
awacs: 0.84
fighterEXP: 3.78
fighterHAS: 0.08

HAS DAMAGE ANALYSIS:
HAS 16 (fighterHAS): 0.27 avg hits, 0.4% destruction rate
HAS 17 (fighterHAS): 0.28 avg hits, 0.4% destruction rate
HAS 18 (fighterHAS): 0.27 avg hits, 0.4% destruction rate
HAS 19 (fighterHAS): 0.28 avg hits, 0.4% destruction rate
HAS 20 (fighterHAS): 0.28 avg hits, 0.3% destruction rate
HAS 21 (fighterHAS): 0.28 avg hits, 0.4% destruction rate
HAS 22 (fighterHAS): 0.27 avg hits, 0.4% destruction rate
HAS 23 (fighterHAS): 0.29 avg hits, 0.4% destruction rate
HAS 24 (fighterHAS): 0.27 avg hits, 0.3% destruction rate
HAS 25 (fighterHAS): 0.28 avg hits, 0.4% destruction rate
HAS 26 (fighterHAS): 0.27 avg hits, 0.4% destruction rate
HAS 27 (fighterHAS): 0.27 avg hits, 0.4% destruction rate
HAS 28 (fighterHAS): 0.29 avg hits, 0.7% destruction rate
HAS 29 (fighterHAS): 0.26 avg hits, 1.0% destruction rate
HAS 30 (fighterHAS): 0.28 avg hits, 0.5% destruction rate
HAS 31 (fighterHAS): 0.27 avg hits, 0.3% destruction rate
HAS 32 (fighterHAS): 0.27 avg hits, 0.4% destruction rate
HAS 33 (fighterHAS): 0.28 avg hits, 0.3% destruction rate
HAS 34 (fighterHAS): 0.28 avg hits, 0.4% destruction rate

EXPOSED AIRCRAFT ANALYSIS:

EXPOSED 1 (fighterEXP): 0.09 avg hits [P-800: 0.06, Kh-101: 0.01, Kalibr: 0.02, Iskander-K: 0.01, OTR-
21:0.00], 31.6% destruction rate, 9.2% direct hits, 22.5% splash kills

EXPOSED 2 (fighterEXP): 0.09 avg hits [P-800: 0.06, Kalibr: 0.01, Kh-101: 0.01, Iskander-K: 0.01, OTR-
21:0.00], 33.6% destruction rate, 9.0% direct hits, 24.5% splash kills

EXPOSED 3 (fighterEXP): 0.08 avg hits [P-800: 0.05, Kalibr: 0.02, Iskander-K: 0.01, Kh-101: 0.01, OTR-
21:0.00], 40.0% destruction rate, 8.4% direct hits, 31.6% splash kills

EXPOSED 4 (fighterEXP): 0.09 avg hits [Kalibr: 0.02, P-800: 0.06, Iskander-K: 0.01, Kh-101: 0.01, OTR-
21:0.00], 37.9% destruction rate, 8.9% direct hits, 29.1% splash kills

EXPOSED 5 (fighterEXP): 0.10 avg hits [Kalibr: 0.02, P-800: 0.06, Kh-101: 0.01, Iskander-K: 0.01, OTR-
21:0.00], 26.1% destruction rate, 9.7% direct hits, 16.4% splash kills




EXPOSED 6 (awacs): 0.32 avg hits [Iskander-K: 0.17, Kalibr: 0.06, P-800: 0.05, Kh-101: 0.03, OTR-21:
0.01], 84.0% destruction rate, 31.5% direct hits, 52.4% splash kills

EXPOSED 7 (tanker): 0.20 avg hits [Iskander-K: 0.13, Kalibr: 0.03, P-800: 0.02, Kh-101: 0.01, OTR-21:
0.01], 86.8% destruction rate, 19.5% direct hits, 67.2% splash kills

EXPOSED 8 (tanker): 0.20 avg hits [Iskander-K: 0.14, Kh-101: 0.01, Kalibr: 0.03, P-800: 0.02, OTR-21:
0.01], 86.0% destruction rate, 20.1% direct hits, 65.9% splash kills

EXPOSED 9 (tanker): 0.23 avg hits [Iskander-K: 0.14, Kh-101: 0.02, OTR-21: 0.01, Kalibr: 0.03, P-800:
0.03], 76.0% destruction rate, 23.3% direct hits, 52.7% splash kills

EXPOSED 10 (fighterEXP): 0.05 avg hits [Kh-101: 0.00, P-800: 0.03, Iskander-K: 0.00, Kalibr: 0.01, OTR-
21:0.00], 68.5% destruction rate, 4.6% direct hits, 63.9% splash kills

EXPOSED 11 (fighterEXP): 0.09 avg hits [Kh-101: 0.01, P-800: 0.06, Iskander-K: 0.01, Kalibr: 0.01, OTR-
21:0.00], 35.0% destruction rate, 8.9% direct hits, 26.1% splash kills

EXPOSED 12 (fighterEXP): 0.10 avg hits [Kalibr: 0.02, P-800: 0.06, Iskander-K: 0.01, Kh-101: 0.01, OTR-
21:0.00], 20.3% destruction rate, 9.8% direct hits, 10.5% splash kills

EXPOSED 13 (fighterEXP): 0.09 avg hits [P-800: 0.06, Iskander-K: 0.01, Kh-101: 0.01, Kalibr: 0.02, OTR-
21:0.00], 28.5% destruction rate, 9.4% direct hits, 19.1% splash kills

EXPOSED 14 (fighterEXP): 0.10 avg hits [P-800: 0.06, Kh-101: 0.01, Kalibr: 0.02, Iskander-K: 0.01, OTR-
21:0.00], 28.5% destruction rate, 9.6% direct hits, 18.9% splash kills

EXPOSED 15 (fighterEXP): 0.09 avg hits [P-800: 0.06, Iskander-K: 0.00, Kalibr: 0.02, Kh-101: 0.01, OTR-
21:0.00], 28.5% destruction rate, 9.5% direct hits, 19.0% splash kills

EXPOSED SUMMARY:
Average destruction rate: 47.4%
Average hits per exposed aircraft: 0.13
Total direct hit kills: 1.91
Total splash kills: 5.20

EMPTY HAS ANALYSIS:

EMPTY HAS 1: 0.16 avg hits [Kh-101: 0.04, Kalibr: 0.03, P-800: 0.04, Iskander-K: 0.05, OTR-21: 0.00],
0.5% destruction rate

EMPTY HAS 2: 0.16 avg hits [Kalibr: 0.03, P-800: 0.04, Iskander-K: 0.05, Kh-101: 0.03, OTR-21: 0.00],
0.7% destruction rate

EMPTY HAS 3: 0.16 avg hits [P-800: 0.04, Kh-101: 0.04, Kalibr: 0.03, Iskander-K: 0.06, OTR-21: 0.00],
0.6% destruction rate

EMPTY HAS 4: 0.16 avg hits [P-800: 0.04, Kh-101: 0.03, Iskander-K: 0.06, Kalibr: 0.03, OTR-21: 0.00],
0.6% destruction rate

EMPTY HAS SUMMARY:
Average destruction rate: 0.6%
Average hits per empty HAS: 0.16
Total empty HAS destroyed: 0.02
Deception effectiveness: 99.4% survival rate




A3

Outcome Visualization Comparisons Scenarios 1

Current Situation with 4 Decoys - Amari Air Base - Missile Impact Run

59.280
W HAS Aircraft
@ Exposed Aircraft
< Empty HAS
—>€ Destroyed Aircraft
59.275 4 ~@- Destroyed Empty HAS
- Missile Hit
Missile Miss
59.270
59.265
[
E=]
2 59.260
¥~
Lo
59.255
59.250
59.245
59.240
24.16 24.17 24.18 24.19 24.20 24.21 24.22 24.23 24.24 24.25
Longitude
Hi?her (+10%) HAS Protection with 4 Decoys - Amari Air Base - Missile Impact Run
59.280
Amari Air Base Area B HAS Aircraft
59.267°N, 24.210°E @ Exposed Aircraft
Map: 5.0x4.4 km <> Empty HAS
—>€ Destroyed Aircraft
282755 -’ Destroyed Empty HAS
- Missile Hit
Missile Miss
59.270 A1
59.265 1
7]
o
2 59.260
=
3
59.255 A1
59.250 -
59.245 -
59.240

24.16 24.17 24.18 24.19 24.20 24.21 24.22 24.23 24.24 24.25




A XXX

Scenario 1 Visualizations

F15
EXP

Latitude

TMIISIHL ZILUMAELUVIT Wi % MSUWWY3 - MIIEH Al DE2T © ITNIS230S HHFasL Rl

+5.925el

0.0085 4

0.0080

0.0075 4

Latitude

0.0070

0.00865

0.0060

Amari Air Base Area

W HAs Aircraft
@ Exposed Aircraft
¢ Empty HAS
= Destroyed Aircraft
" @ Destroyed Empty HAS
Ay Missile Hit
Missile Miss

IS JILUGLIVIE WL Y SLY

+5.925el

T
24.206

T
24.207

[F18|
F17| |EXP
Fis| (B
EXP

24.208 24.209 24.210 24.211
Longitude
Y5 —RIGI Ml LEIT - SIS HHPaLTL nun

0.009

0.008

0.007

0.006 -

0.005 A

0.004

0.002

Amari Air Base Area
59.267°N, 24.210°E
Map: 5.0x4.4 km

HAS Aircraft

oeon

Empty HAS

+r- Missile Hit
Missile Miss

Exposed Aircraft

—>& Destroyed Aircraft
~@- Destroyed Empty HAS

I
24.188

24.190

24.192

24.194 24.196 24.198 24.200 24.202
Longitude

24.204

EXP

F32
HAS| (F33
HAS

F34 |
HAS Y|

F
F1 E}(‘EI

EXv




Latitude

Current Situation with 4 Decoys - Amari Air Base - Missile Impact Run

+5.926e1
T
RruRg ‘.‘ | B HAS Aircraft
@ Exposed Aircraft
&> Empty HAS
=& Destroyed Aircraft
~@- Destroyed Empty HAS
Missile Hit
// ™ +r
0.007 > ‘\ Missile Miss
0.006
o
=)
S
=
=}
o
0.005
0.004
0.003
24.212 24.214 24.216 24.218 24.220 24.222 24.224
Longitude
+5.925e1 Current Situation with 4 Decoys - Amari Air Base - Missile Impact Run
= HAS Aircraft
Exposed Aircraft
0.0094 Empty HAS
Destroyed Aircraft
Destroyed Empty HAS
Missile Hit
0.0092 1 Missile Miss
b
=
\ A
0.0090 A\ \
\ \
\\ -
0.0088 \
\
\
A\
\
0.0086 - A\
\\
A
0.0084 \\
)
-
-
0.0082
///
0.0080 \\
\
\
A
0.001 0.002 0.003 0.004 0.005

Longitude +2.421el




Latitude

Current Situation with 4 Decoys - Amari Air Base - Missile Impact Run

59.270 4

59.268 1

59.266 1

59.264 1

59.262

Amari Air Base Area

B HAS Aircraft
@ Exposed Aircraft
> Empty HAS
=& Destroyed Aircraft
~@- Destroyed Empty HAS
Ay Missile Hit
Missile Miss

24.190 24.195 24.200 24.205 24.210
Longitude




A4

Scenario 2 Outcome Visualizations

Latitude

59,266 |
—
L7
E 73 |Exe
B _pF2 | EXP
= &
59.264 1
59.262 =
59.260 -
24.185 24.190 24.195 24.200 24.205
Longitude
45.925¢1 Higher (+10%) HAS Protection with 4 Decoys - Amari Air Base - Missile Impact Run
0.0080 5 ,
W HAS Aircraft
@ Exposed Aircraft
> Empty HAS
& Destroyed Aircraft
~@- Destroyed Empty HAS
- Missile Hit
0.0075 Missile Miss
/
/
0.0070 1 _
0.0065 i //
/ P
0.0060
0.0055
24.204 24.206 24.208 24.210 24.212

59.270 1

59.268

Higher (+10%) HAS Protection with 4 Decoys - Amari Air Base - Missile Impact Run

W HAS Aircraft
@ Exposed Aircraft
<> Empty HAS
& Destroyed Aircraft
~@- Destroyed Empty HAS
A Missile Hit
Missile Miss

F5
EXP

Longitude




YIS |\ TAV /U] 11M2 F 1 vLSwLIvi
+5.926el

I MTLUYS T MG M DE2S T T2

PEYL nun

0.008 4

ir Base Area
59.267°N, 24.210°E /

Map: 5.0x4.4 km I/

0.008 4

0.007 4

AS (F2s
HAS

1)

Latitud

0.006

F34
HAS |

0.005

B HAS Aircraft
@ Exposed Aircraft
&> Empty HAS
& Destroyed Aircraft
-@- Destroyed Empty HAS
Ar- Missile Hit
Missile Miss

F23 F24
HAS HAS

0.004 4

0.003 q

0.002 4

24.2100

INYIISI \ TAV /U] 119 FIVLSLLIVIE W

0.009

0.008

0.007

0.006

Latitude

0.005

0.004

0.003

0.002

242175 24.2200

g

24.2125 24.2150

- MG AN vass -

24.2225 24.2250

QEETIS

+5.925el
T

Amari Air Base Area
59.267°N, 24.210°E
Map: 5.0x4.4 km

W HAS Aircraft
@ Exposed Aircraft
Empty HAS
=& Destroyed Aircraft
~@- Destroyed Empty HAS
- Missile Hit
Missile Miss

24.196 24,198 24.200

Longitude

24.190 24.192 24.194

24.204

24.202

MEvL nun

F28
HAS

F29
HAS

F30
HASY

F15
F1a | EXP
Flexp|




Latitude

0.00950 -

0.00925 +

0.00900 +

0.00875 4

0.00850 -

0.00825 -

0.00800 -

0.00775 +

+5.925el

Higher (+10%) HAS Protection with 4 Decoys - Amari Air Base - Missile Impact Run

[
®
<

ol

<+
L3

HAS Aircraft

Exposed Aircraft

Empty HAS

Destroyed Aircraft
Destroyed Empty HAS |
Missile Hit
Missile Miss

0.001

0.002

Longitude

0.003

+2.421el




A.5

Python Code

import random

import math

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import geopandas as gpd

from collections import defaultdict
from matplotlib.lines import Line2D
from shapely.geometry import Point
from typing import Dict, List, Any, Optional, Tuple

# --- Configuration Parameters ---
CONFIG = {

‘targeting': {
'exposed_preference_probability': 0.7,
'has_priority for_heavy _missiles': True

s

"has_damage': {
"hits_for_destruction_chance': 3,
'destruction_probability after_hits': 0.6,
'adjacent_has_damage _chance': 0.3

s

'splash_damage': {

'use_cube_root_scaling': True,

'lethal_radius_factor': 25, # Multiplier for cube root (high damage zone)
‘damage_radius_factor': 25, # Multiplier for cube root (moderate damage zone)
'fragment_radius_factor': 40, # Multiplier for cube root (fragment zone)

# Legacy parameters
'exposed_destruction_chance': 0.5,
'blast_radius_coefficient': 1.0
'adjacent_has_range_m': 50,

3

# Target vulnerability factors

'vulnerability factors': {
"EXPOSED': 2.0, # Full vulnerability
'"HAS': 0.25, # Reduced vulnerability in hardened shelters
"EMPTY_HAS': 0.25

}s

# Distance-based damage probability
'damage_decay_model': 'exponential', # 'linear' or ‘'exponential'
'decay_constant': 2.0

s

'interception': {
'heavy_missile_priority': True,
'random_intercept_chance': 0.41

s

'visualization': {
'figure_size': (12, 10)}

}

# --- Missile and Aircraft Data Definitions ---
missile_types = {

'Iskander-M': {'cep_m': 50, ‘'warhead_kg': 700, 'value_weight': 3, 'warhead_type':
'Iskander-K': {'cep_m': 50, 'warhead_kg': 480, 'value_weight': 2, 'warhead_type':

"HE'},
'"HE'},




'P-800': {'cep_m': 1.5, 'warhead_kg': 300, 'value_weight': 1, 'warhead_type': 'HE'},

'Kalibr': {'cep_m': 12, 'warhead_kg': 400, 'value_weight': 2, 'warhead_type': 'HE'},

'OTR-21': {'cep_m': 150, 'warhead_kg': 482, 'value weight': 2, 'warhead_type': 'HE'},

'Kh-101': {'cep_m': 15, 'warhead_kg': 450, 'value_weight': 2, 'warhead_type': 'HE'},
}

aircraft_types = {
'fighterEXP': {'radius_m': 5.35, 'has_resistance_kg': 0, 'target_value': 2},
'fighterHAS': {'radius_m': 30, 'has_resistance_kg': 500, 'target_value': 1},
"tanker': {'radius_m': 30, 'has_resistance_kg': 500, 'target_value': 3},
‘awacs': {'radius_m': 22, 'has_resistance_kg': 500, 'target_value': 6}

def calculate_enhanced_blast_radius(warhead_kg, warhead_type='HE'):
"""Calculate blast radius using cube root scaling for realistic physics."""

# TNT equivalent factors for different warhead types

tnt_factors = {

'HE': 1.0, # High Explosive (standard)

'"HEAT': 0.8, # High Explosive Anti-Tank

'"FAE': 1.3, # Fuel-Air Explosive (more blast effect)
'"FRAG': 0.7 # Fragmentation (less blast, more fragments)

}
tnt_equivalent = warhead kg * tnt_factors.get(warhead_type, 1.90)

if CONFIG[ 'splash_damage']['use_cube_root_scaling']:
# Cube root scaling (realistic physics)
cube_root_weight = tnt_equivalent ** (1/3)

lethal_radius = CONFIG['splash_damage']['lethal_radius_factor'] * cube_root_weight

damage_radius = CONFIG[ 'splash_damage'][ 'damage_radius_factor'] * cube_root_weight

fragment_radius = CONFIG[ 'splash_damage']['fragment_radius_factor'] * cube_root weight
else:

# Legacy square root scaling

sqrt_weight = (tnt_equivalent ** 0.5)

lethal_radius = sqrt_weight * CONFIG[ 'splash_damage'][ 'blast_radius_coefficient"']

damage_radius = lethal_radius * 1.5

fragment_radius = lethal_radius * 2.0

return {
'lethal': lethal_radius,
‘damage': damage_radius,
"fragment': fragment_radius

# --- Input Validation ---
def validate_inputs(missiles: List[Dict], aircraft: List[Dict], empty_has: List[Dict] = None) ->
bool:

Validate input parameters for the simulation.
try:
# Validate missiles
for missile in missiles:
if 'type' not in missile or missile['type'] not in missile_types:
raise ValueError(f"Invalid missile type: {missile.get('type', 'Unknown')}")

# Validate aircraft
for i, aircraft_obj in enumerate(aircraft):
if 'type' not in aircraft_obj or aircraft_obj['type'] not in aircraft_types:
raise ValueError(f"Invalid aircraft type: {aircraft_obj.get('type', 'Unknown')}")

37



# Validate coordinates if provided
if 'x' in aircraft_obj and not isinstance(aircraft_obj['x'], (int, float)):
raise ValueError(f"Aircraft {i} x coordinate must be numeric, got:
{aircraft_obj['x"']}")
if 'y' in aircraft_obj and not isinstance(aircraft_obj['y'], (int, float)):
raise ValueError(f"Aircraft {i} y coordinate must be numeric, got:
{aircraft_obj['y']}")

# Validate shelter assignment
if 'shelter' not in aircraft_obj:
raise ValueError(f"Aircraft {i} must have 'shelter' field specified ('HAS' or
"EXPOSED')")
if aircraft_obj['shelter'] not in ['HAS', 'EXPOSED']:
raise ValueError(f"Aircraft {i} shelter must be 'HAS' or 'EXPOSED', got:
{aircraft_obj[ 'shelter']}")

# Validate empty HAS
if empty_has:
for i, has_obj in enumerate(empty_has):
if 'x' not in has_obj or 'y' not in has_obj:
raise ValueError(f"Empty HAS {i} must have 'x' and 'y' coordinates")
if not isinstance(has_obj['x"'], (int, float)) or not isinstance(has_obj['y'],
(int, float)):
raise ValueError(f"Empty HAS {i} coordinates must be numeric")

return True

except Exception as e:
print(f"Input validation error: {e}")
return False

def calculate_damage_probability(distance, blast_radii, target_shelter, target_type='aircraft'):
"""Calculate damage probability based on distance from blast center."""

# Get vulnerability factor based on shelter type
vuln_key = target_shelter if target_type == 'aircraft' else 'EMPTY_HAS'
vulnerability = CONFIG[ 'splash_damage']['vulnerability factors'].get(vuln_key, 1.0)

# Calculate base probability based on distance and blast zones
if distance <= blast_radii['lethal’]:
base_prob = 0.95 # Very high probability in lethal zone
elif distance <= blast_radii[ 'damage’]:
# Linear decay in damage zone
zone_progress = (distance - blast_radii['lethal']) / (blast_radii[ 'damage'] -
blast_radii['lethal'])
base_prob = 0.95 - (0.65 * zone_progress) # 0.95 to 0.30
elif distance <= blast_radii['fragment']:
# Linear decay in fragment zone
zone_progress = (distance - blast_radii[ 'damage']) / (blast_radii['fragment'] -
blast_radii[ 'damage’'])
base prob = 0.30 - (0.25 * zone_progress) # 0.30 to 0.05
else:

base_prob = 0.0 # No damage beyond fragment radius

# Apply decay model
if CONFIG[ 'splash_damage']['damage_decay model'] == 'exponential' and distance > 0:
decay_factor = math.exp(-CONFIG[ 'splash_damage'][ 'decay_constant'] * distance /
blast_radii[ 'fragment'])
base_prob *= decay_factor

# Apply vulnerability factor
final_prob = base_prob * vulnerability

return max(0.0, min(1.0, final_prob))




# --- Plot Function ---
def plot_simulation(aircraft_status: List[Dict], missile_impacts: List[Dict],

fig, ax = plt.

# Amari Air Ba

empty_has_status: List[Dict] = None,
title: str = "Missile Impact Visualization",
shapefile_path: Optional[str] = None) -> None:

Plot the simulation results with aircraft positions, empty HAS, and missile impacts.

subplots(figsize=CONFIG[ 'visualization']['figure_size'])

se coordinates

base_lon, base_lat = 24.21, 59.267

map_bounds = {
'lon_min"':
'lat_min':
}

use_geographic

# Load shapefi

24.16, 'lon_max': 24.25,
59.240, 'lat_max': 59.280

= False

le

if shapefile_path is not None:

try:
gdf =

gpd.read_file(shapefile_path)

print(f"Original CRS: {gdf.crs}")

gdf =

gdf.plot(ax=ax, color="'lightgray', edgecolor='black', alpha=0.5, zorder=-1)
print(f"Shapefile loaded - CRS: {gdf.crs}, Bounds: {gdf.total bounds}")

gdf.to_crs(epsg=4326) # Convert to WGS84 (lat/lon)

use_geographic = True

# Set
ax.set
ax.set

except Exc
print(

plot bounds to the full map area

_x1lim(map_bounds['lon_min'], map_bounds['lon_max"'])
_ylim(map_bounds['lat_min'], map_bounds['lat_max'])

eption as e:
f"Could not load shapefile: {e}")

if not use_geographic:

pass

# Plot empty HAS
if empty_has_status:
for i, has in enumerate(empty_has_status):
if use_geographic:

#
X

y

#
X
y
else:
XJ

Convert meter offsets to degree offsets within map bounds
= base_lon + (has['x'] / 56000)
= base_lat + (has['y'] / 111000)

Ensure coordinates stay within map bounds
= max(map_bounds['lon_min'], min(map_bounds['lon_max'], x))

= max(map_bounds['lat_min'], min(map_bounds['lat _max'], y))

y = has['x"], has['y"]

if has['destroyed']:

color = ‘'darkred’
marker = 'D' # Diamond for destroyed empty HAS
size = 180
alpha = 0.8
edge_color = 'black'
edge_width = 2
else:

color = 'lightblue’
marker = 'D' # Diamond for empty HAS
size = 150




alpha = 0.6
edge _color
edge_width

'blue’
1

# Plot empty HAS
ax.scatter(x, y, c=color, marker=marker, s=size,
edgecolors=edge_color, linewidth=edge_width, zorder=1, alpha=alpha)

# Add empty HAS labels

has_label = f"H{i+1}"

destroyed_status = "DEST" if has['destroyed'] else "EMPTY"
full label = f"{has_label}\n{destroyed_ status}"

# Position label slightly offset from HAS
label offset_x = 0.0001 if use_geographic else 30
label offset_y = 0.0001 if use_geographic else 30

ax.text(x + label offset_x, y + label offset_y, full label,
fontsize=7, fontweight='bold', ha='left', va='bottom',
bbox=dict(boxstyle="round,pad=0.2"', facecolor='lightcyan', alpha=0.7,
edgecolor="blue"),
zorder=4)

# Plot aircraft with labels
for i, ac in enumerate(aircraft_status):
if use_geographic:
# Convert meter offsets to degree offsets within map bounds
x = base_lon + (ac['x'] / 56000)
y = base_lat + (ac['y'] / 111000)

# Ensure coordinates stay within map bounds

x = max(map_bounds[ 'lon_min'], min(map_bounds['lon_max'], x))

y = max(map_bounds['lat_min'], min(map_bounds['lat_max'], y))
else:

X, y =ac['x"], ac['y"]

if ac['destroyed']:
color = 'red'
marker = 'x'
size = 200
alpha = 1.0
edge_color = ‘'darkred'
edge_width = 3
elif ac['shelter'] == 'HAS':
color = 'blue'
marker = 's' # Square for HAS
size = 150
alpha = 0.9
edge_color = 'navy’
edge_width = 2
else:
color = 'green’
marker = 'o'
size = 150
alpha = 0.9
edge_color = 'darkgreen'
edge_width = 2

# Plot aircraft
ax.scatter(x, y, c=color, marker=marker, s=size,

edgecolors=edge_color, linewidth=edge width, zorder=2, alpha=alpha)

# Add aircraft labels showing type and ID




aircraft_label = f"{ac['type'][0].upper()}{i+1}" # F1, T1, Al, etc.
shelter_status = "HAS" if ac['shelter'] == 'HAS' else "EXP"
destroyed_status = "DEST" if ac['destroyed'] else ""

# Create label with aircraft info
full label = f"{aircraft_label}\n{shelter_status}"
if destroyed_status:

full label += f"\n{destroyed_status}"

# Position label slightly offset from aircraft
label offset_x = 0.0001 if use_geographic else 50
label offset_y = 0.0001 if use_geographic else 50

ax.text(x + label offset_x, y + label offset_y, full label,
fontsize=8, fontweight='bold', ha='left', va='bottom',
bbox=dict(boxstyle="'round,pad=0.3"', facecolor="'white', alpha=0.8,
edgecolor="gray"'),
zorder=4)

# Plot missile impacts
for impact in missile_impacts:
if use_geographic:
# Convert meter offsets to degree offsets within map bounds
x = base_lon + (impact['x'] / 56000)
y = base_lat + (impact['y'] / 111000)

# Ensure coordinates stay within map bounds

x = max(map_bounds[ 'lon_min'], min(map_bounds['lon_max"'], x))

y = max(map_bounds['lat_min'], min(map_bounds['lat_max'], y))
else:

X, y = impact['x'], impact['y']

hit = impact['hit"]

if hit:
color = 'orange'
marker = "'*'
size = 120
edge_color = 'red’
edge_width = 2
else:
color = 'yellow'
marker = ‘o' # Changed from '.' to 'o' for better visibility
size = 80 # Increased size for misses
edge_color = 'orange'

edge_width =1

ax.scatter(x, y, c=color, marker=marker, s=size,
edgecolors=edge_color, linewidth=edge_width, zorder=3, alpha=0.8)

# Create legend
legend_elements = [
Line2D([@], [@], marker='s', color="'w', label="'HAS Aircraft’,
markerfacecolor="'blue', markeredgecolor='black', markersize=8),
Line2D([@], [@], marker='o', color="'w', label='Exposed Aircraft',
markerfacecolor="'green', markeredgecolor='black', markersize=8),
Line2D([@], [@], marker='D', color="w', label="Empty HAS',
markerfacecolor="lightblue', markeredgecolor='blue', markersize=8),
Line2D([@], [@], marker='x', color='red', label='Destroyed Aircraft’,
markersize=10, markeredgewidth=2),
Line2D([@], [@], marker='D', color='darkred', label='Destroyed Empty HAS',
markersize=8, markeredgewidth=2),
Line2D([@], [@], marker='*', color='orange', label="Missile Hit',
markerfacecolor="'orange', markeredgecolor="'red', markersize=10),




Line2D([@], [@], marker='o', color='yellow', label='Missile Miss',
markerfacecolor="yellow', markeredgecolor='orange', markersize=8),
1
ax.legend(handles=legend_elements, loc='upper right', fontsize=9)
ax.set_title(title, fontsize=14, fontweight="'bold")

if use_geographic:
ax.set_xlabel("Longitude", fontsize=12)
ax.set_ylabel("Latitude", fontsize=12)
ax.grid(True, linestyle=':', linewidth=0.5, alpha=0.7)
# Add coordinates and map info
map_width_km = (map_bounds['lon_max'] - map_bounds['lon_min']) * 56 # Approximate km
map_height_km = (map_bounds['lat_max'] - map_bounds['lat_min']) * 111 # Approximate km
ax.text(0.02, 0.98, f"Amari Air Base Area\n{base_lat:.3f}°N, {base_lon:.3f}°E\nMap:
{map_width_km:.1f}x{map_height_km:.1f} km",
transform=ax.transAxes, fontsize=10, verticalalignment="top',
bbox=dict(boxstyle="round', facecolor='white', alpha=0.8))
else:
ax.set_xlabel("X Coordinate (meters)", fontsize=12)
ax.set_ylabel("Y Coordinate (meters)", fontsize=12)
ax.set_x1im(-5000, 5000)
ax.set_ylim(-3000, 3000)
ax.axhline(@, color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
ax.axvline(®@, color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
ax.grid(True, linestyle=':"', linewidth=0.5, alpha=0.7)
ax.set_aspect('equal’)

plt.tight_layout()
plt.show()

# --- Target Selection ---
def compute_hit_probability(target_radius_m: float, cep_m: float, k: float = 1.774) -> float:
Calculate hit probability based on target radius and missile CEP."""
if cep_m <= @ or target_radius_m <= @:
return 0.0
return 1 - math.exp(-k * (target_radius_m ** 2) / (cep_m ** 2))

nun

def choose_target(exposed_targets: List[int], has_targets: List[int], empty_has_targets:
List[int],
aircraft_status: List[Dict], empty_has_status: List[Dict], missile_type: str) ->
Tuple[Optional[int], str]:
"""Choose target based on missile type and targeting doctrine. Returns (target_index,
target_type)."""
missile = missile_types[missile type]

if (CONFIG[ 'targeting']['has_priority_for_heavy_missiles'] and
missile['warhead_kg'] > 500):
if has_targets:
return random.choice(has_targets), 'aircraft'
elif empty_has_targets:
return random.choice(empty_has_targets), 'empty_has'

# Weight targets by value and availability
all targets = []

# Add exposed targets with preference

for idx in exposed_targets:
ac_value = aircraft_types[aircraft_status[idx]['type']]['target_value']
weight = ac_value * CONFIG['targeting']['exposed_preference_probability"]
all targets.extend([('aircraft', idx)] * int(weight * 10))

# Add occupied HAS targets
for idx in has_targets:




def

ac_value = aircraft_types[aircraft_status[idx]['type']]['target_value']
weight = ac_value * (1 - CONFIG['targeting']['exposed_preference_probability'])
all targets.extend([('aircraft’, idx)] * int(weight * 10))

# Add empty HAS targets with lower weight (deception value)

for idx in empty_has_targets:
weight = 0.7 # Lower value for empty HAS
all_targets.extend([('empty_has', idx)] * int(weight * 10))

if all_targets:
target_type, target_idx = random.choice(all_targets)
return target_idx, target_type

else:
return None, 'none’

apply_splash_damage(target_index, aircraft_status, missile_type, destroyed_summary,
empty_has_status=None, target_type='aircraft'):
Apply enhanced splash damage using cube root scaling and distance-based probability.

missile = missile_types[missile_type]

# Get target coordinates based on type
if target_type == 'aircraft':
target_obj = aircraft_status[target_index]
else: # empty_has
target_obj = empty_has_status[target_index] if empty_has_status else None
if not target_obj:
return

# Calculate enhanced blast radii

blast_radii = calculate_enhanced_blast_radius(
missile[ 'warhead_kg'],
missile.get('warhead_type', 'HE')

)

#print (f"DEBUG: {missile_type} blast radii - Lethal: {blast_radii['lethal']:.1f}m, "
#f"Damage: {blast_radii[ 'damage']:.1f}m, Fragment: {blast_radii['fragment']:.1f}m")

# Apply splash damage to aircraft
for i, other_ac in enumerate(aircraft_status):
if i == target_index and target_type == ‘'aircraft':
continue # Skip the primary target
if other_ac['destroyed']:
continue # Skip already destroyed aircraft

# Calculate distance

dx_m = other_ac['x'] - target_obj['x
dy_m = other_ac['y'] - target_obj['y
distance = math.hypot(dx_m, dy _m)

]
']

# Skip if beyond maximum blast radius
if distance > blast_radii[ 'fragment']:
continue

# Calculate damage probability
damage_prob = calculate_damage_probability(
distance, blast_radii, other_ac['shelter'], 'aircraft’

)

if damage_prob > © and random.random() < damage_prob:
other_ac[ 'destroyed'] = True
other_ac['splash_kill'] = True
destroyed_summary[other_ac['shelter']] += 1




destroyed_summary[ 'by_missile type'][missile_type] += 1
destroyed_summary[ 'by_aircraft_type'][other_ac['type']] += 1
destroyed_summary[ 'splash_kills'] += 1

#print (f"DEBUG: Splash kill - Aircraft {i} ({other_ac['type']}) at {distance:.1f}m "
#f"with {damage_prob:.2%} probability")

# Apply splash damage to empty HAS if provided
if empty_has_status:
for i, other_has in enumerate(empty_has_status):
if i == target_index and target_type == 'empty_has':
continue # Skip the primary target
if other_has.get('destroyed', False):
continue # Skip already destroyed HAS

# Calculate distance

dx_m = other_has['x'] - target_obj['x"]
dy_m = other_has['y'] - target_obj['y']
distance = math.hypot(dx_m, dy_m)

# Skip if beyond maximum blast radius
if distance > blast_radii['fragment']:
continue

# Calculate damage probability for empty HAS
damage_prob = calculate_damage probability(

distance, blast_radii, 'EMPTY_HAS', 'empty_has'
)

if damage_prob > © and random.random() < damage_prob:
other_has['destroyed'] = True
destroyed_summary[ 'EMPTY_HAS'] += 1
destroyed_summary['by missile type'][missile_type] += 1

#print (f"DEBUG: Splash damage - Empty HAS {i} at {distance:.1f}m "
#f"with {damage_prob:.2%} probability")

# --- Core Simulation ---

def run_simulation(missiles: List[Dict], aircraft: List[Dict], empty_has: List[Dict] = None,
patriot_launchers: int = 6, missiles_per_launcher: int = 4,
intercept_rate: float = 0.41, waves: int = 6) -> Dict:

Run a single simulation of missile strikes against aircraft and empty HAS.

if not validate_inputs(missiles, aircraft, empty_has):
raise ValueError("Invalid input parameters")

impact_log = []
aircraft_status = []
empty_has_status = []

# Initialize aircraft status

for i, ac in enumerate(aircraft):
shelter = ac['shelter']
x = float(ac.get('x"', (i % 5) * 800 - 1600))
y = float(ac.get('y', (i // 5) * 800 - 1600))

aircraft_status.append({
"type': ac['type'],
'shelter': shelter,
'destroyed': False,
'x': X,
vy,
'hit_count': @,




'hit_log': defaultdict(int),
'splash_kill': False
)

# Initialize empty HAS status
if empty_has:
for i, has in enumerate(empty_has):
empty has_status.append({
'destroyed’: False,
'x': float(has['x']),
'y': float(has['y']),
'hit_count': o,
'hit_log': defaultdict(int)

}
# Categorize targets
has_targets = [1i for i, ac in enumerate(aircraft_status) if ac['shelter'] == 'HAS']
exposed_targets = [i for i, ac in enumerate(aircraft_status) if ac['shelter'] == "EXPOSED']

empty _has_targets = list(range(len(empty_has_status)))

# Initialize results tracking
destroyed_summary = {
'HAS': 0,
"EXPOSED': 0,
"EMPTY_HAS': 0,
'by missile type': defaultdict(int),
'by aircraft_type': defaultdict(int),
‘splash_kills': @,
"intercepted_by_type': defaultdict(int),
"skipped_due_to_no_targets': defaultdict(int),
'aircraft_status': aircraft_status,
‘empty_has_status': empty_has_status,
"impact_log': []
}

# Process waves

total_interceptors = patriot_launchers * missiles_per_launcher
interceptors_per_wave = max(1l, total_interceptors // waves)
wave_size = max(1l, len(missiles) // waves)

for w in range(waves):
start_idx = w * wave_size
end_idx = min((w + 1) * wave_size, len(missiles))
wave_missiles = missiles[start_idx:end_idx]
remaining_interceptors = interceptors_per_wave

# Improved interception: First pass to identify high-priority targets

heavy_missiles = [m for m in wave_missiles if missile_types[m['type']][ 'warhead_kg'] >
500]

other_missiles = [m for m in wave_missiles if missile_types[m[ 'type']][ 'warhead_kg'] <=
499]

# Process heavy missiles first with higher interception priority
all_wave_missiles = []
for missile_obj in heavy_missiles:
all wave_missiles.append((missile_obj, True)) # True = high priority
for missile_obj in other_missiles:
all wave_missiles.append((missile_obj, False)) # False = normal priority

for missile_obj, is_high_priority in all_wave_missiles:
missile = missile_types[missile_obj['type']]

# Skip if no valid targets




available_has = [i for i in has_targets if not aircraft_status[i]['destroyed']]
available_exposed = [i for i in exposed_targets if not

aircraft_status[i]['destroyed']]

available_empty_has = [i for i in empty_has_targets if not

empty_has_status[i][ 'destroyed’']]

if not available_has and not available_exposed and not available_empty_has:
destroyed_summary|[ 'skipped_due_to_no_targets'][missile obj['type']] += 1
continue

# Interception logic

intercepted = False

if remaining_interceptors > 0:
# Calculate interception probability based on priority and remaining interceptors
base_intercept_prob = intercept_rate

# Boost interception chance for high-priority targets
if is_high_priority:

actual_intercept_prob = min(@.8, base_intercept_prob * 1.3)
else:

actual_intercept_prob = base_intercept_prob

# Further boost if Amari have plenty of interceptors remaining
interceptor_availability ratio = remaining_interceptors / max(1,

interceptors_per_wave)

if interceptor_availability ratio > 0.5:
actual_intercept_prob = min(©.9, actual_intercept_prob * 1.1)

# Always attempt interception

remaining_interceptors -= 1

if random.random() < actual_intercept_prob:
destroyed_summary[ 'intercepted_by_type'][missile obj['type']] += 1
intercepted = True

if intercepted:
continue

# Choose target
target_index, target_type = choose_target(available_exposed, available_has,

available_empty_has,

aircraft_status, empty_has_status,

missile obj['type'])

structure

if target_index is None:
continue

# Calculate hit probability and determine hit
if target_type == 'aircraft':
target_obj = aircraft_status[target_index]
ac_type = aircraft_types[target_obj[ 'type']]
p_hit = compute_hit_probability(ac_type['radius_m'], missile['cep_m'])
else: # empty_has
target_obj = empty_has_status[target_index]
# Empty HAS have similar hit probability to small aircraft
p_hit = compute_hit_probability(25.0, missile['cep_m']) # 25m radius for HAS

hit = random.random() <= p_hit

# Log impact

impact_log.append({
'missile_type': missile_obj['type'],
'target_index': target_index,
"target_type': target_type,




'x': target_obj['x"'],
'y': target_obj['y'],
'hit': hit

H

# Handle misses
if not hit:

miss_x = target_obj['x'] + random.gauss(@, missile['cep_m'])
miss_y = target_obj['y'] + random.gauss(@, missile['cep_m'])
impact_log[-1]['x"'] = miss_x
impact_log[-1]['y"'] = miss_y
continue
# Damage processing for aircraft
if target_type == 'aircraft':
target_ac = aircraft_status[target_index]
ac_type = aircraft_types[target_ac['type']]
if target_ac['shelter'] == 'HAS' and not target_ac['destroyed']:

target_ac['hit_log'][missile_obj['type']] +=1

# HAS damage model
if missile['warhead kg'] >= 800:
target_ac[ 'destroyed'] = True
else:
# Progressive damage system
if missile[ 'warhead_kg'] >= 600:
damage_points = 1.5 # Heavy damage
elif missile[ 'warhead_kg'] >= 400:
damage_points = 1.0 # Medium damage
else:
damage_points = 0.5 # Light damage

target_ac['hit_count'] += damage_points

# Calculate destruction probability based on cumulative damage
if target_ac['hit_count'] >=
CONFIG[ "has_damage' ][ "hits_for_destruction_chance']:
# Higher threshold for destruction chance
destruction_prob =
CONFIG[ 'has_damage'][ 'destruction_probability after_hits']
# Reduce probability for well-protected HAS
if target_ac['hit_count'] < 4: # Need significant damage
accumulation
destruction_prob *= 0.7

if random.random() < destruction_prob:
target_ac[ 'destroyed'] = True

if target_ac['destroyed']:
destroyed_summary[ 'HAS'] += 1
destroyed_summary['by missile type'][missile_obj['type']] += 1
destroyed_summary[ 'by_aircraft_type'][target_ac['type']] +=1

elif target_ac['shelter'] == 'EXPOSED' and not target_ac['destroyed']:
# FIRST: Track the direct hit before destroying the aircraft
target_ac['hit_log'][missile_obj['type']] += 1
target_ac['hit_count'] += 1

# THEN: Exposed aircraft destroyed immediately by direct hit
target_ac[ 'destroyed'] = True

target_ac[ 'splash_kill'] = False # This is a direct hit, not splash
destroyed_summary[ "EXPOSED'] += 1

47



destroyed_summary[ 'by _missile_type'][missile_obj['type']] += 1
destroyed_summary[ 'by_aircraft_type'][target_ac['type']] += 1

# Apply splash damage to nearby aircraft
apply _splash_damage(target_index, aircraft_status, missile_obj['type'],
destroyed_summary, empty has_status, 'aircraft')

else: # empty_has damage model
target_has = empty_has_status[target_index]
if not target_has[ 'destroyed']:
target_has['hit_log'][missile_obj[ "type']] += 1
target_has['hit_count'] += 1

if missile['warhead _kg'] >= 600:
target_has['destroyed'] = True
elif target_has['hit_count'] >= 2: # Require at least 2 hits for lighter
missiles
# Probability-based destruction for accumulated damage
destruction_prob = 0.8 if target_has['hit_count'] >= 3 else 0.5
if random.random() < destruction_prob:
target_has['destroyed'] = True

if target_has[ 'destroyed']:
destroyed_summary[ 'EMPTY_HAS'] += 1
destroyed_summary['by missile type'][missile_obj['type']] += 1

destroyed_summary[ 'impact_log'] = impact_log
return destroyed_summary

# --- Results Display ---

def print_detailed_results(scenario_num: int, avg _results: Dict, scenario: Dict) -> None:
"""Print detailed results for a scenario including empty HAS.
print(f"\n{'="*50}")
print (f"SCENARIO {scenario_num} RESULTS")
print(f"{'="*50}")

# Calculate ratios from manual assignments

has_count = sum(1 for ac in scenario['aircraft'] if ac['shelter'] == 'HAS')
exposed_count = sum(1l for ac in scenario['aircraft'] if ac['shelter'] == 'EXPOSED')
empty_has_count = len(scenario.get('empty _has', []))

total_aircraft = len(scenario[ 'aircraft'])

total_structures = total_aircraft + empty_has_count

has_ratio = has_count / total aircraft if total_aircraft > 0 else ©
exposed_ratio = exposed_count / total_aircraft if total_aircraft > 0 else ©

print(f"Manual HAS Assignment: {has_count}/{total_aircraft} ({has_ratio:.1%})")
print(f"Manual EXPOSED Assignment: {exposed_count}/{total_aircraft} ({exposed_ratio:.1%})")
print(f"Empty HAS Structures: {empty_has_count}")

print(f"Total Aircraft: {total_aircraft}")

print(f"Total Structures: {total_structures}")

print(f"Total Missiles: {len(scenario[ 'missiles'])}")

print(f"Valid Simulation Runs: {avg_results['valid_runs']}")

print(f"\nDESTRUCTION SUMMARY:")
total_destroyed = avg_results.get('HAS', @) + avg_results.get('EXPOSED', ©0)
print(f" Aircraft Destroyed: {total_destroyed:.2f}")

print(f" - In HAS: {avg_results.get('HAS', @):.2f}")
print(f" - Exposed: {avg_results.get('EXPOSED', 0):.2f}")
print(f" - From Splash: {avg_results.get('splash_kills', @):.2f}")

print(f" Empty HAS Destroyed: {avg_results.get('EMPTY_HAS', 0):.2f}")




print(f"\nBY MISSILE TYPE:")
for mtype, avg in avg_results.get('by missile type', {}).items():
intercepted = avg _results.get('intercepted_by type', {}).get(mtype, 0)
skipped = avg results.get('skipped_due_to_no_targets', {}).get(mtype, 0)
print(f" {mtype}: {avg:.2f} destroyed, {intercepted:.2f} intercepted, {skipped:.2f}
skipped")

print(f"\nBY AIRCRAFT TYPE:")
for atype, avg in avg results.get('by_aircraft_type', {}).items():
print(f" {atype}: {avg:.2f}")

# HAS damage analysis
if avg_results.get('HAS_details') and has_count > @:
print(f"\nHAS DAMAGE ANALYSIS:")

has_indices = [i for i, ac in enumerate(scenario['aircraft']) if ac['shelter'] == 'HAS']
hits_accumulator = [defaultdict(int) for _ in range(len(has_indices))]

hit_counts = [0 for _ in range(len(has_indices))]

destroyed_counts = [@ for _ in range(len(has_indices))]

for sim_status in avg_results['HAS details']:
for rel_idx, abs_idx in enumerate(has_indices):
if abs_idx < len(sim_status) and sim_status[abs_idx]['shelter'] == 'HAS':

ac = sim_status[abs_idx]

hit_counts[rel_idx] += ac['hit_count']

for mtype, count in ac['hit_log'].items():
hits_accumulator[rel_idx][mtype] += count

if ac['destroyed']:
destroyed_counts[rel_idx] += 1

for rel_idx, abs_idx in enumerate(has_indices):
destruction_rate = destroyed_counts[rel_idx] / avg_results['valid runs']
avg_hits = hit_counts[rel_idx] / avg_results['valid_runs']
ac_type = scenario['aircraft'][abs_idx]['type']
print(f" HAS {abs_idx + 1} ({ac_type}): {avg_hits:.2f} avg hits, "
f"{destruction_rate:.1%} destruction rate")

# EXPOSED aircraft analysis
if avg_results.get('HAS_details') and exposed_count > ©:
print(f"\nEXPOSED AIRCRAFT ANALYSIS:")

exposed_indices = [i for i, ac in enumerate(scenario['aircraft']) if ac['shelter'] ==
"EXPOSED" ]

exposed_hits_accumulator = [defaultdict(int) for _ in range(len(exposed_indices))]

exposed_hit_counts = [0 for _ in range(len(exposed_indices))]

exposed_destroyed_counts = [@ for _ in range(len(exposed_indices))]

splash_destroyed_counts = [@ for _ in range(len(exposed_indices))]

direct_hit_destroyed_counts = [0 for _ in range(len(exposed_indices))] # NEW

for sim_status in avg_results['HAS_details']:
for rel_idx, abs_idx in enumerate(exposed_indices):
if abs_idx < len(sim_status) and sim_status[abs_idx]['shelter'] == 'EXPOSED':

ac = sim_status[abs_idx]

exposed_hit counts[rel idx] += ac['hit_count']

for mtype, count in ac['hit_log'].items():
exposed_hits_accumulator[rel_idx][mtype] += count

if ac['destroyed']:
exposed_destroyed_counts[rel_idx] += 1

if ac.get('splash_kill', False):
splash_destroyed_counts[rel_idx] += 1
else:




direct_hit_destroyed_counts[rel_idx] += 1

for rel_idx, abs_idx in enumerate(exposed_indices):
destruction_rate = exposed_destroyed_counts[rel_idx] / avg_results['valid runs']
avg_hits = exposed_hit_counts[rel_idx] / avg_results['valid_runs']
splash_rate = splash_destroyed_counts[rel_idx] / avg_results['valid_runs']
direct_hit_rate = direct_hit_destroyed_counts[rel_idx] / avg_results['valid_runs']
ac_type = scenario['aircraft'][abs_idx]['type’]

missile_breakdown = []
for mtype, hits in exposed_hits_accumulator[rel_idx].items():

avg_missile hits = hits / avg_results['valid_runs']

if avg _missile_hits > 0:

missile_breakdown.append(f"{mtype}: {avg_missile_hits:.2f}")

missile _detail = f" [{', '.join(missile_ breakdown)}]" if missile_breakdown else ""
splash_detail = f", {splash_rate:.1%} splash kills" if splash_rate > @ else ""
direct_hit_detail = f", {direct_hit_rate:.1%} direct hits" if direct_hit_rate > 0 else ""

print(f" EXPOSED {abs_idx + 1} ({ac_type}): {avg_hits:.2f} avg hits{missile_detail}, "
f"{destruction_rate:.1%} destruction rate{direct_hit_detail}{splash_detail}")

# Summary statistics for exposed aircraft

total_exposed _destruction_rate = sum(exposed_destroyed counts) / (len(exposed_indices) *
avg_results['valid runs']) if exposed_indices else ©

total_exposed_hits = sum(exposed_hit_counts) / (len(exposed_indices) *
avg_results['valid runs']) if exposed_indices else ©

total_splash_kills = sum(splash_destroyed_counts) / avg_results['valid_runs'] if
avg_results['valid_runs'] > © else ©

total_direct_hits = sum(direct_hit_destroyed_counts) / avg_results['valid_runs'] if
avg_results['valid_runs'] > © else ©

print(f"\n EXPOSED SUMMARY:")

print(f" Average destruction rate: {total_exposed_destruction_rate:.1%}")
print(f" Average hits per exposed aircraft: {total_exposed_hits:.2f}")
print(f" Total direct hit kills: {total _direct_hits:.2f}")

print(f" Total splash kills: {total_splash kills:.2f}")

# EMPTY HAS analysis
if avg_results.get('HAS_details') and empty_has_count > 0:
print(f"\nEMPTY HAS ANALYSIS:")

empty_has_hits_accumulator = [defaultdict(int) for _ in range(empty_has_count)]
empty_has_hit_counts = [0 for _ in range(empty_has_count)]
empty_has_destroyed_counts = [0 for _ in range(empty_has_count)]

# Extract empty HAS data from simulation runs
for run_data in avg_results.get('full_aircraft_runs', []):
if 'empty_has_status' in run_data:
empty_has_data = run_data[ 'empty_has_status']
for i, has in enumerate(empty_has_data):
if i < len(empty_has_hit_counts):
empty_has_hit_counts[i] += has.get('hit_count', )
for mtype, count in has.get('hit_log', {}).items():
empty_has_hits_accumulator[i][mtype] += count
if has.get('destroyed', False):
empty_has_destroyed_counts[i] += 1

for i in range(empty_has_count):
destruction_rate = empty_has_destroyed _counts[i] / avg_results['valid_runs'] if
avg_results['valid _runs'] > © else ©
avg_hits = empty_has_hit_counts[i] / avg_results['valid_runs'] if
avg_results['valid _runs'] > 0@ else ©




# Show missile type breakdown for this empty HAS
missile_breakdown = []
for mtype, hits in empty_has_hits_accumulator[i].items():
avg_missile hits = hits / avg_results['valid_runs']
if avg_missile_hits > 0:
missile_breakdown.append(f"{mtype}: {avg missile_hits:.2f}")

missile_detail = " [{', '.join(missile_breakdown)}]" if missile_breakdown else

print(f" EMPTY HAS {i + 1}: {avg_hits:.2f} avg hits{missile_detail}, "
f"{destruction_rate:.1%} destruction rate")

# Summary statistics for empty HAS

total_empty has_destruction_rate = sum(empty_has_destroyed_counts) / (empty_has_count *
avg_results['valid _runs']) if empty_has_count > © and avg_results['valid runs'] > © else @

total_empty_has_hits = sum(empty_has_hit_counts) / (empty_has_count *
avg_results['valid_runs']) if empty_has_count > @ and avg_results['valid _runs'] > © else ©

print(f"\n EMPTY HAS SUMMARY:")

print(f" Average destruction rate: {total_empty_has_destruction_rate:.1%}")
print(f" Average hits per empty HAS: {total_empty_has_hits:.2f}")

print(f" Total empty HAS destroyed: {avg _results.get('EMPTY_HAS', 0):.2f}")
print(f" Deception effectiveness: {(1 - total empty_has_destruction_rate):.1%}

survival rate")

# --- Monte Carlo Execution ---
def monte_carlo(n_runs: int, missiles: List[Dict], aircraft: List[Dict], empty_has: List[Dict] =
None) -> Dict:
"""Run Monte Carlo simulation with multiple iterations including empty HAS.
cumulative_results = {
'"HAS': o,
"EXPOSED': 0,
"EMPTY_HAS': 0,
'by missile type': defaultdict(int),
'by aircraft_type': defaultdict(int),
'splash_kills': @,
"intercepted_by type': defaultdict(int),
'skipped_due_to_no_targets': defaultdict(int),
'"HAS details': [],
"impact_logs': [],
"full aircraft_runs': []

}

print(f"Running {n_runs} Monte Carlo simulations...")

for run in range(n_runs):
if n_runs > 10 and run % max(l, n_runs // 10) == 0O:
print(f"Progress: {run}/{n_runs} ({100*run//n_runs}%)")

try:
result = run_simulation(
missiles=missiles.copy(),
aircraft=aircraft.copy(),
empty_has=empty_has.copy() if empty_has else None

)

# Aggregate results

cumulative results['HAS'] += result['HAS']

cumulative results['EXPOSED'] += result['EXPOSED']
cumulative_results['EMPTY_HAS'] += result.get('EMPTY_HAS', 0)
cumulative_results['splash_kills'] += result['splash_kills"]




for key in ['by_missile type', 'intercepted_by_type', 'skipped_due_to_no_targets',
'by_aircraft_type']:
for mtype, count in result[key].items():
cumulative_results[key][mtype] += count

cumulative_results['HAS_details'].append(result['aircraft_status'])
cumulative_results['impact_logs'].append(result['impact_log'])

# Store complete run data including empty HAS

run_data = {
'aircraft_status': result['aircraft_status'],
'empty_has_status': result.get('empty_has_status', []),
"impact_log': result['impact_log']

}

cumulative_results['full aircraft_runs'].append(run_data)

except Exception as e:
print(f"Error in simulation run {run}: {e}")
continue

# Calculate averages
valid _runs = len(cumulative_results['full aircraft_runs'])
if valid_runs ==
raise ValueError("No successful simulation runs completed")

avg_results = {
'"HAS': cumulative_results['HAS'] / valid_runs,
"EXPOSED': cumulative_results['EXPOSED'] / valid_runs,
"EMPTY_HAS': cumulative_results['EMPTY_HAS'] / valid_runs,
'by_missile_type': {k: v / valid_runs for k, v in
cumulative_results['by missile_type'].items()},
‘splash_kills': cumulative_results['splash_kills'] / valid_runs,
'by aircraft_type': {k: v / valid_runs for k, v in
cumulative_results['by_aircraft_type'].items()},
"intercepted_by type': {k: v / valid_runs for k, v in
cumulative_results['intercepted_by type'].items()},
'skipped_due_to_no_targets': {k: v / valid_runs for k, v in
cumulative_results['skipped_due_to_no_targets'].items()},
'"HAS _details': cumulative_results['HAS_details'],
"impact_logs': cumulative_results['impact_logs'],
"full aircraft_runs': cumulative_results['full_aircraft_runs'],
'"TOTAL': (cumulative_results['HAS'] + cumulative_results['EXPOSED']) / valid_runs,
‘valid_runs': valid_runs
}

return avg_results

if _name__ == "_main__":
print("Advanced Missile Strike Simulation - Manual HAS Attribution with Empty HAS")
print ( Me———=====================================================================" )

scenarios = [
{
'name’: 'High HAS Protection with Decoys - Amari Air Base’,
'missiles': [{'type': 'Iskander-M'}] * 50 +
[{'type': 'Iskander-K'}] * 10 +
[{'type': 'OTR-21'}]* 5 +
[{'type': 'Kalibr'}] * 5 +
[{'type': 'P-800'}] * 2 +
[{'type': 'Kh-101'}] * 20,
‘aircraft': [
# APRON NORTH-EAST




{'type': 'fighterEXP', 'x': 327, 'y': -291, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 349, 'y': -281, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 373, 'y': -271, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 397, 'y': -261, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 421, 'y': -251, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 445, 'y': -241, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 469, 'y': -231, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 493, 'y': -221, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 517, 'y': -211, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 541, 'y': -201, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 565, 'y': -191, 'shelter': 'EXPOSED'},
#APRON SOUTH LARGE
{'type': 'awacs', 'x': -771, 'y': -1336, 'shelter': 'EXPOSED'},
{'type': 'tanker', 'x': -820, 'y': -1357, 'shelter': 'EXPOSED'},
{'type': 'tanker', 'x': -869, 'y': -1377, 'shelter': 'EXPOSED'},
{'type': 'tanker', 'x': -929, 'y': -1402, 'shelter': 'EXPOSED'},
#APRON SOUTH SMALL
{'type': 'fighterEXP', 'x': -713, 'y': -1306, ‘'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -672, 'y': -1286, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -636, 'y': -1268, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -600, 'y': -1251, ‘'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -562, 'y': -1233, ‘'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -527, 'y': -1217, ‘'shelter': 'EXPOSED'},
#APRON SOUTH-SOUTH-EAST
{'type': 'fighterEXP', 'x': 83, 'y': -938, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 106, 'y -928, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 128, 'y': -920, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 150, 'y -910, 'shelter': 'EXPOSED'},
# HAS NORTH-WEST (occupied)
{'type': 'fighterHAS', 'x': -979, 'y': -619, 'shelter': 'HAS'},
{'type': 'fighterHAS', 'x': -961, 'y': -577, 'shelter': 'HAS'},
{"type': 'fighterHAS', 'x': -983, 'y': -392, 'shelter': 'HAS'},
{"type': 'fighterHAS', 'x': -935, 'y': -363, 'shelter': 'HAS'},
{"type': 'fighterHAS', 'x': -906, 'y': -323, 'shelter': 'HAS'},
{'type': 'fighterHAS', 'x': -886, 'y': -470, 'shelter': 'HAS'},
{'type': 'fighterHAS', 'x': -853, 'y': -436, 'shelter': 'HAS'},
{'type': 'fighterHAS', 'x': -781, 'y': -407, 'shelter': 'HAS'},

1,

‘empty_has': [
# Empty HAS
{'x": -596, 'y': -167},
{'x": -537, 'y': -142},
{'x": -497, 'y': -303},
{'x": -425, 'y': -303},
{'x": -440, 'y': -162},
{'x': -354, 'y': -136},
{'x': -304, 'y': -245},
{'x': -44, 'y': -1083},
{'x': 10, 'y': -1101},
{'x': -75, 'y': -1167},
{'x": -3, 'y': -117@},
{'x"': -148, 'y': -1170},
{'x": -636, 'y': -284},

1

'name': 'Low HAS Protection with Decoys - Amari Air Base',

'missiles': [{'type': 'Iskander-M'}] * 10 +

[{'type":

'Iskander-K'}] * 10 +




[{'type":

"OTR-21'}]* 5 +

[{"type': 'Kalibr'}] * 2 +
[{"type': 'P-800'}] * 2 +
[{"type': 'Kh-101'}] *5,

‘aircraft': [
# APRON NORTH-EAST

{'type': 'fighterEXP', 'x': 327, 'y': -291, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 349, 'y': -281, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 373, 'y': -271, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 397, 'y': -261, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 421, 'y': -251, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 445, 'y': -241, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 469, 'y': -231, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 493, 'y': -221, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 517, 'y': -211, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 541, 'y': -201, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': 565, 'y': -191, ‘'shelter': 'EXPOSED'},

#APRON SOUTH LARGE

{'type': 'awacs', 'x': -771, 'y': -1336, 'shelter': 'EXPOSED'},
{'type': 'tanker', 'x': -820, 'y': -1357, 'shelter': 'EXPOSED'},
{'type': 'tanker', 'x': -869, 'y': -1377, 'shelter': 'EXPOSED'},
{'type': 'tanker', 'x': -929, 'y': -1402, 'shelter': 'EXPOSED'},

#APRON SOUTH SMALL

{'type': 'fighterEXP', 'x': -713, 'y': -1306, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -672, 'y': -1286, 'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -636, 'y': -1268, ‘'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -600, 'y': -1251, ‘'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -562, 'y': -1233, ‘'shelter': 'EXPOSED'},
{'type': 'fighterEXP', 'x': -527, 'y': -1217, ‘'shelter': 'EXPOSED'},
# HAS NORTH-WEST (limited occupied)

{'type': 'fighterHAS', 'x': -979, 'y': -619, 'shelter': 'HAS'},
{'type': 'fighterHAS', 'x': -961, 'y': -577, 'shelter': 'HAS'},
{"type': 'fighterHAS', 'x': -983, 'y': -392, 'shelter': 'HAS'},
{"type': 'fighterHAS', 'x': -935, 'y': -363, 'shelter': 'HAS'},

1,

‘empty_has': [
# Empty HAS
{'x': -906, 'y': -323},
{'x": -3, 'y': -117@},
{'x': -886, 'y': -470},
{'x': -853, 'y': -436},
{'x': -781, 'y': -407},
{'x"': -596, 'y': -167},
{'x"': -537, 'y': -142},
{'x"': -497, 'y': -303},
{'x"': -425, 'y': -303},
{'x"': -440, 'y': -162},
{'x': -354, 'y': -136},
{'x': -304, 'y': -245},
{'x': -44, 'y': -1083},
{'x': 10, 'y': -1101},
{'x": -75, 'y': -1167},
{'x": -3, 'y': -117@},
{'x"': -148, 'y': -1170},

1

]

# Run scenarios
for i, scenario in enumerate(scenarios, 1):




print(f"\nProcessing {scenario['name']}...")

try:
avg_results = monte_carlo(
N_RUNS=1,  H < —ioloio o ool o o im s ol s s ol o s oo o el s o s s s o sl s s s
Monte Carlo runs
missiles=scenario[ 'missiles'],
aircraft=scenario[ 'aircraft’'],
empty_has=scenario.get('empty_has', [])

)

# Print results
print_detailed_results(i, avg_results, scenario)

# Show visualization for first run
try:
if avg_results['full_aircraft_runs'] and avg_results['impact_logs']:
first_run_data = avg_results['full _aircraft_runs'][0]
first_run_aircraft = first_run_data['aircraft_status']
first_run_empty_has = first_run_data.get('empty_has_status', [])
first_run_impacts = avg_results['impact_logs'][@]

print(f"\nGenerating visualization for {scenario['name']}...")
plot_simulation(
first_run_aircraft,
first_run_impacts,
first_run_empty_has,
title=f"{scenario[ 'name']} - Missile Impact Run",
shapefile_path=r"C:\Users\Acer\OneDrive\Bureaublad\GEOTEST\Amari.shp"
)
else:
print("No data available for visualization")
except Exception as viz_error:
print(f"Visualization error: {viz_error}")

except Exception as e:
print(f"Error processing scenario {i}: {e}")
import traceback
traceback.print_exc()
continue

print(f"\nSimulation completed successfully!")
print("Configuration used:")
for key, value in CONFIG.items():

print(f" {key}: {value}")




